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Abstract. In 2008, Groth and Sahai proposed a general methodol-
ogy for constructing non-interactive zero-knowledge (and witness-indis-
tinguishable) proofs in bilinear groups. While avoiding expensive NP-
reductions, these proof systems are still inefficient due to the number
of pairing computations required for verification. We apply recent tech-
niques of batch verification to the Groth-Sahai proof systems and suc-
ceed to improve significantly the complexity of proof verification. We
give explicit batch-verification formulas for generic Groth-Sahai equa-
tions (whose cost is less than a tenth of the original) as well as for
specific popular protocols relying on their methodology (namely Groth’s
group signatures and the P-signatures by Belenkiy, Chase, Kohlweiss and
Lysyanskaya).
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1 Introduction

In a zero-knowledge proof system, a prover convinces a verifier via an interactive
protocol that a mathematical statement is true, without revealing anything other
than the validity of the assertion. In 1988, Blum, Feldman and Micali [BFM90]
showed that the use of a common random string shared between the prover
and the verifier permits to design a zero-knowledge proof system for all NP-
languages that does not require interaction. These proofs, called non-interactive
zero-knowledge (NIZK), turned out to be a particularly useful tool in construct-
ing cryptographic primitives. Unfortunately, their work (as well as subsequent
results) does not yield efficient proofs. Until recently, the only way to construct
efficient proofs was to rely on the random-oracle model (ROM) [BR93], which
has been subject to a series of criticisms starting with [CGH98].

In 2008, Groth and Sahai [GS08] proposed a way to produce efficient and
practical NIZK and non-interactive witness-indistinguishable (NIWI) proofs for
(algebraic) statements related to groups equipped with a bilinear map. In par-
ticular, they give proofs for the simultaneous satisfiability of a set of equa-
tions. They proposed three instantiations of their system based on different



(mild) computational assumptions: the subgroup decision problem, the sym-
metric external Diffie-Hellman problem (SXDH) and the decision linear problem
(DLIN). Each one of these has already given rise to many applications such
as [BW06,BW07,CGS07,Gro07,GL07,BCKL08,BCC+09,FPV09]. Although it is
much more efficient than all previous proposals, their proof system still lacks
in practicality compared to the ROM, since the verification of a single equation
requires the computation of dozens of bilinear-map evaluations by the verifier.

The aim of this paper is to optimize the verification procedure at the expense
of slightly weakening the soundness of the proof system.

Prior Work. In the last twenty years, there has been a lot of work in cryptog-
raphy in which expensive tasks are processed in batch rather than individually
to achieve better efficiency. Batch cryptography was first introduced by Fiat
[Fia90], who proposed an algorithm to compute several private RSA key oper-
ations (with different exponents) through one full exponentiation and several
small exponentiations. Batch cryptography is particularly relevant in settings
where many exponentiations need to be verified together: many schemes were
proposed to achieve batch verification of digital signatures - e.g. [NMVR94] for
DSA signatures, and it seems natural to apply such techniques to the verifica-
tion of Groth-Sahai proofs, which require expensive evaluations of pairings. In
1998, Bellare, Garay and Rabin [BGR98] took the first systematic look at batch
verification and described several techniques for conducting batch verification
of exponentiations with high confidence. They proposed three generic methods
called the random-subset test, the small-exponents test and the bucket test. More
recently, Ferrara, Green, Hohenberger and Pedersen [FGHP09] presented a de-
tailed study on how to securely batch-verify a set of pairing-based equations and
some applications on existing signatures schemes.

Our Results. The main result of the paper is a significant reduction of the cost
of Groth-Sahai proof systems by using batch-verification techniques. In particu-
lar, we give efficient explicit verification procedures for the three1 instantiations
proposed in [GS08]. The essence of our approach is a trade-off between soundness
and efficiency: if the verification algorithm returns valid, the verifier is assured
that all proved statements are indeed valid with overwhelming probability. The
best improvements are for the proofs based on SXDH and DLIN, which are the
ones with most practical relevance (see Sections 5 and 6). Table 1 summarizes the
number of dominant pairing operations required to verify the different algebraic
statements in Groth-Sahai terminology (see Section 3 for details).

In [CHP07], Camenisch et al. explicitly mentioned as an “exciting” open
problem the development of fast batching schemes for various forms of anony-
mous authentication, such as group signatures and anonymous credentials. This
paper is the first to address this issue in the standard security model by consid-
ering two schemes based on the Groth-Sahai methodology.
1 The results for the (least practical) instantiation based on the subgroup decision

problem are deferred to the full version of the paper [BFI+10].
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Naive computation Batch computation

SXDH

Pairing-product 5m+ 3n+ 16 m+ 2n+ 8

Multi-scalar multiplication in G1 8m+ 2n+ 14 min(2n+ 9, 2m+ n+ 7)

Multi-scalar multiplication in G2 8n+ 2m+ 14 min(2m+ 9, 2n+m+ 7)

Quadratic 8m+ 8n+ 12 2 min(m,n) + 8

DLIN

Pairing-product 12n+ 27 3n+ 6

Multi-scalar multiplication 9n+ 12m+ 27 3n+ 3m+ 6

Quadratic 18n+ 24 3n+ 6

Table 1. Number of pairings per proof verification, where n and m stand for the
number of different types of variables.

The first scheme we consider was proposed by Groth in 2007 [Gro07]. It is a
constant-size group-signature scheme whose security can be proved in the stan-
dard model, i.e. without relying on the random oracle heuristic. For illustrative
purposes, we concentrate on the simpler variant of the scheme that provides CPA
anonymity only. Even this variant does not achieve satisfactory efficiency—the
verification of a signature requires the computation of 68 expensive pairing op-
erations. In Section 7, we propose an improved verification procedure in which
the total number of bilinear-map evaluations drops to 11. In addition, if n ≥ 2
signatures (for the same group) have to be verified at once, we manage to further
decrease this number from 11n to 4n+ 7.

In Section 8, we study the P-signature scheme2 proposed by Belenkiy, Chase,
Kohlweiss and Lysyanskaya [BCKL08]. Since anonymous credentials are an im-
mediate consequence of P-signatures, we thereby apply our techniques to privacy-
preserving authentication mechanisms. Belenkiy et al. proposed two instantia-
tions of their protocol (based on SXDH and DLIN). They evaluated that the
verification of a proof of possession of a signature would involve respectively 68
and 128 pairing evaluations. We show that this can be reduced to 15 and 12,
respectively. Moreover, the number of pairing operations required to verify n ≥ 2
signatures is reduced to 2n+13 and 3n+9, respectively, by using our techniques.

2 Preliminaries

2.1 Bilinear Groups

Since Groth-Sahai proof systems apply to group-dependent languages, we sum-
marize the basics of bilinear groups and pairing-based assumptions. In the sequel,

2 A P-signature scheme is a digital-signature scheme with an additional non-interactive
proof of signature possession.
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we consider an algorithm G that, on input a security parameter λ, outputs a tu-
ple (N,G1,G2,GT , e, g1, g2), where G1,G2,GT are cyclic groups of order N , g1
and g2 generate G1 and G2 respectively, and e is an admissible bilinear map
e : G1 × G2 → GT , which means that it is efficiently computable, e(g1, g2) gen-
erates GT , and that e(ua, vb) = e(u, v)ab for all u ∈ G1, v ∈ G2 and a, b ∈ ZN .

Definition 1. Let (p,G1,G2,GT , e, g1, g2) be a bilinear group with p prime. The
Symmetric eXternal Decision Diffie-Hellman (SXDH) assumption [ACHdM05]
states that the decision Diffie-Hellman assumption holds in both G1 and G2, i.e.
the distributions (u, ux, uy, uz) and (u, ux, uy, ux·y) are computationally indistin-
guishable for a random group element u ∈ Gi and random scalars x, y, z ∈ Zp
(for i ∈ {1, 2}).

Definition 2. Let (p,G,GT , e, g) be a bilinear group where p is prime (and G1 =
G2 = G). The decision linear (DLIN) assumption [BBS04] states that the two
distributions (u, v, w, ua, vb, wc) and (u, v, w, ua, vb, wa+b) are computationally
indistinguishable for random group elements u, v, w ∈ G and random a, b, c ∈ Zp.

2.2 Notation

We let “·” denote the product of two elements either in ZN , in G or in GT . For
equal-dimension vectors or matrices A and B of group elements, A � B stands
for their entry-wise product (i.e. their Hadamard product). For a vector or a
matrix A = (ai,j)i,j of group elements and x ∈ Z, we let Ax denote the matrix
(axi,j)i,j . Let Γ = (γi,j)i,j ∈ Zm×n and ~B ∈ Gn. Then Γ ~B := (

∏n
j=1 B

γij

j )mi=1.
We will use 〈·, ·〉 for bilinear products between vectors of either scalars or group
elements. Let ~a,~b ∈ Zn

N and ~A, ~B ∈ Gn. We define

〈~a,~b 〉 :=
∑n
i=1 ai · bi 〈~a, ~B 〉 :=

∏n
i=1 B

ai
i 〈 ~A, ~B 〉 :=

∏n
i=1 e(Ai,Bi)

We employ Groth and Sahai’s notation of a bilinear product (for k ∈ {2, 3}):

• : Gn×k
1 ×Gn×k

2 → G k×k
T

defined as ~c • ~d := (
∏n
`=1 e(c`,i, d`,j))1≤i,j≤k. For the case G1 = G2 and k = 3

we define a symmetric variant3
s• : Gn×3 ×Gn×3 → G 3×3

T by:

~c
s• ~d :=

(
n∏
`=1

e(c`,i, d`,j)
1
2 e(c`,j , d`,i)

1
2

)
1≤i,j≤3

3 Note that in their DLIN instantiation, Groth and Sahai use •̃ for the asymmetric
map and • for the symmetric variant.
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3 Groth-Sahai Proof Systems

We sketch the results of Groth and Sahai [GS08] on proofs of satisfiability of
sets of equations over a bilinear group (N,G1,G2,GT , e, g1, g2). Due to the com-
plexity of their methodology, we merely give what is needed for our results and
refer to the full version of [GS08] for any additional details. The three types of
equations are the following:

A pairing-product equation over variables ~X ∈ Gm
1 and ~Y ∈ Gn

2 is of the form

〈 ~A, ~Y〉 · 〈 ~X , ~B〉 · 〈 ~X , Γ ~Y〉 = tT , (1)

defined by constants ~A ∈ Gn
1 , ~B ∈ Gm

2 , Γ ∈ Zm×n
N and tT ∈ GT .

A multi-scalar multiplication equation over variables ~y ∈ Zn
N and ~X ∈ Gm

1 is of
the form

〈~y, ~A〉 · 〈~b, ~X〉 · 〈~y, Γ ~X〉 = T , (2)

defined by the constants ~A ∈ Gn
1 , ~b ∈ Zm

N , Γ ∈ Zm×n
N and T ∈ G1.

A multi-scalar multiplication equation in group G2 is defined analogously.
A quadratic equation in ZN over variables ~x ∈ Zm

N and ~y ∈ Zn
N is of the form

〈~a, ~y 〉+ 〈~x,~b 〉+ 〈~x, Γ~y 〉 = t , (3)

defined by the constants ~a ∈ Zn
N , ~b ∈ Zm

N , Γ ∈ Zm×n
N and t ∈ ZN .

The common reference string for the proof system is a key to make commitments
to the variables of the different types. A proof of satisfiability is constructed by
first committing to the variables of the respective equation and then constructing
a “proof” for each equation. The latter asserts that the committed values indeed
satisfy the equation. There are three instantiations of the proof system described
in [GS08]; we present only those based on the SXDH and the DLIN assumption
(the instantiation based on the subgroup decision assumption is described in the
full version of the paper [BFI+10]).

SXDH. The language is over a bilinear group (p,G1,G2,GT , e, g1, g2) where p
is prime. The commitment key consists of u1 = (u1,1, u1,2) ,u2 = (u2,1, u2,2) in
G 2

1 and v1 = (v1,1, v1,2) ,v2 = (v2,1, v2,2) in G 2
2 .

We write ~u =
(

u1

u2

)
=
(
u1,1 u1,2

u2,1 u2,2

)
and ~v =

(
v1

v2

)
=
(
v1,1 v1,2
v2,1 v2,2

)
.

Let X ∈ G1, Y ∈ G2 and x ∈ Zp. We define ι1(X) := (1, X), ι2(Y ) :=
(1, Y ), ι′1(x) := (u x2,1, (u2,2g1)x) and ι′2(x) := (v x2,1, (v2,2g2)x). To commit to
X ∈ G1, one chooses randomness s1, s2 ∈ Zp and sets cX := ι1(X)� us11 � us22 ,
a commitment to Y ∈ G2 is defined as dY := ι2(Y ) � vs11 � vs22 . To make a
commitment to x ∈ Zp in G 2

1 one chooses s ∈ Zp and sets cx := ι′1(x) � us1, a
commitment in G 2

2 is defined as dx := ι′2(x)� vs1.
To show satisfiability of a set of equations of the form (1), (2) or (3), one first

makes commitments to a satisfying witness (i.e. an assignment to the variables of
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each equation) and then adds a “proof” per equation. Groth and Sahai describe
how to construct these; for Type (1), they are in G 2×2

2 × G 2×2
1 , for Type (2)

they are in G 2×2
2 ×G 2

1 and for Type (3) in G 2
2 ×G 2

1 .
The verification relations for the proofs are given in Section 5, where we also

discuss how to optimize them. For convenience we define some notations. Let
t ∈ Zp, T1 ∈ G1, T2 ∈ G2 and tT ∈ GT . Then we let4

ιT (tT ) :=

„
1 1
1 tT

«
, ι̂T (T1) :=

„
1 1

e(T1, v2,1) e(T1, v2,2g2)

«
, ι̂T (T2) :=

„
1 e(u2,1, T2)
1 e(u2,2g1, T2)

«
,

and ι′T (t) :=
[
(u2,1, u2,2g1)•(v2,1, v2,2g2)

]t =
(
e(u2,1, v2,1)t e(u2,1, v2,2g2)t

e(u2,2g1, v2,1)t e(u2,2g1, v2,2g2)t

)
.

For the sake of consistency with [GS08], for c ∈ G 1×2
1 and d ∈ G 1×2

2 we denote
F (c,d) := [c • d].

DLIN. In this instantiation, the language is over a bilinear (symmetric) group
(p,G,GT , e, g) with p prime. The commitment key ~u ∈ G 3×3 is of the form
u1 = (u1,1, 1, g), u2 = (1, u2,1, g), u3 = (u3,1, u3,2, u3,3). Let X ∈ G and x ∈ Zp.
We define ι(X) := (1, 1, X) and ι′(x) := (u x3,1, u

x
3,2, (u3,3g)x). To commit to

X ∈ G, choose randomness s1, s2, s3 ∈ Zp and set cX := ι(X)�us11 �us22 �us33 .
To commit to x ∈ Zp, choose s1, s2 ∈ Zp and set cx := ι′(x)� us11 � us23 .

Due to the fact that G1 = G2 = G in this setting, the equations (1), (2) and
(3) simplify to the following respective equations:

〈 ~A, ~Y〉 · 〈~Y, Γ ~Y〉 = tT (1′)

〈~a, ~Y〉 · 〈~x, ~B〉 · 〈~x, Γ ~Y〉 = T (2′)

〈~x,~b〉+ 〈~x, Γ~x〉 = t (3′)

Groth and Sahai show how to construct “proofs” for each type of equation,
where for Types (1’) and (2’), the proof is in G 3×3, whereas for Type (3’) it is in
G 2×3. The verification relations for the proofs are given in Section 6. We define
the following notations. Let t ∈ Zp, T ∈ G and tT ∈ GT . Then we let

ιT (tT ) :=

0@1 1 1
1 1 1
1 1 tT

1A ι̂T (T ) :=

0B@ 1 1 e(u3,1, T )
1
2

1 1 e(u3,2, T )
1
2

e(u3,1, T )
1
2 e(u3,2, T )

1
2 e(u3,3g, T )

1CA
and ι′T (t) :=

[
(u3,1, u3,2, u3,3g)

s• (u3,1, u3,2, u3,3g)
]t.

4 Batch Verification of Pairing Equations

We address the problem of securely batching the verification of (potentially
many) Groth-Sahai proofs. We achieve a trade-off between soundness and ef-
ficiency: if the verification algorithm returns valid, the verifier is assured that
4 Here (and in the DLIN instantiation) we use the rectifications of ι̂T and ι′T by

[GSW09].
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all proved statements are valid with overwhelming probability. Ferrara, Green,
Hohenberger and Pedersen [FGHP09] presented a detailed study on how to se-
curely batch-verify a set of pairing-based equations, which we briefly recall here
(see the full version of [FGHP09] for any additional details).

Given a bilinear structure (N,G1,G2,GT , e, g1, g2), a pairing-based verifica-
tion equation is a Boolean relation of the form:

∏k
i=1 e(fi, hi)

ci
?= A for k ∈ N,

(fi, hi, ci) ∈ G1 × G2 × ZN for i ∈ {1, . . . , k} and A ∈ GT . A pairing-based
verifier is an algorithm which given a pairing-based verification equation out-
puts yes if the Boolean relation holds, and no otherwise (except with negligible
probability).

In order to design a pairing-based verifier for m pairing-based verification
equations, one has to find a way to combine all equations. The technique pro-
posed in [FGHP09] consists in using the small exponents test proposed by Bellare
et al. [BGR98], which here amounts to pick small random exponents δ1, . . . , δm
and checking whether

∏m
j=1

∏kj

i=1 e(fi,j , hi,j)
ci,jδj =

∏m
j=1A

δj

j holds. In order to
further reduce the computational needs, three main techniques may be used:

1. Move the exponent into the pairing: Since, in practice, exponentiation
in GT is more expensive5 than in G1 and G2, this gives a first speed up. As
we are working on pairings, we can also do the opposite if it allows another
technique to apply: e(fi, hi)δi → e(fδi

i , hi)
2. Move the product into the pairing: When two pairings have a common

element, they can be combined to reduce the number of pairings:∏m
j=1 e

(
f
δj

j , hi
)
→ e

(∏m
j=1 f

δj

j , hi

)
3. Switch two products: Sometimes improvements can be made by moving a

product from the first to the second component of a pairing (or vice-versa):∏k
i=1 e

(∏m
j=1 f

δi,j

j , hi

)
↔
∏m
j=1 e

(
fj ,

∏k
i=1 h

δi,j

i

)
The soundness of the pairing-based verifier based on the small exponents test is
quantified in the following theorem [FGHP09, Theorem 3.2]:

Theorem 1. Given m pairing-based verification equations, the small-exponents
verifier described above with random exponents δ1, . . . , δm of ` bits is a pairing-
based batch verifier that accepts an invalid batch with probability at most 2−`.

Handling Invalid Proofs. In the case of verification of multiple proofs (as in
Sections 7 and 8), if there is an invalid proof in the batch, then the verifier will
reject the entire batch with high probability. A simple technique for finding in-
valid proofs in a batch consists in using a recursive divide-and-conquer approach
[PMPS00]. Recently, more efficient techniques were proposed for pairing-based
signatures (see e.g. [Mat09] and references therein) and they apply as well to our
setting.
5 Note that, for Type 2 pairings, exponentiation in G2 is more expensive than in GT

(see [GPS08] for details).
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5 Instantiation 2: SXDH

5.1 Pairing-Product Equation

A proof (~c, ~d, ~π, ~θ) ∈ Gm×2
1 ×Gn×2

2 ×G2×2
2 ×G2×2

1 of satisfiability of an equation
of Type (1) is verified by checking the following equation [GS08]:[

ι1( ~A) • ~d
]
�
[
~c • ι2( ~B)

]
�
[
~c • Γ~d

]
= ιT (tT )�

[
~u • ~π

]
�
[
~θ • ~v

]
.

Let ~c = (ci,k)1≤i≤m
1≤k≤2

∈ Gm×2
1 , ~d = (dj,k)1≤j≤n

1≤k≤2
∈ Gn×2

2 , Γ = (γi,j)1≤i≤m
1≤j≤n

∈ Zm×np ,

~A = (Aj)1≤j≤n ∈ Gn×1
1 and ~B = (Bi)1≤i≤m ∈ Gm×1

2 .

Plugging in the definitions from Section 3, the left hand side is equal to
m∏
i=1

e
(
ci,1,

∏n
j=1 d

γi,j

j,1

) m∏
i=1

e
(
ci,1,Bi

∏n
j=1 d

γi,j

j,2

)
n∏
j=1

e
(
Aj
∏m
i=1 c

γi,j

i,2 , dj,1
) n∏

j=1

e(Aj , dj,2)
m∏
i=1

e
(
ci,2,Bi

∏n
j=1 d

γi,j

j,2

)
 .

If we denote ~π =
(
π1,1 π1,2

π2,1 π2,2

)
, ~θ =

(
θ1,1 θ1,2
θ2,1 θ2,2

)
, the right hand side is equal to

e(u1,1, π1,1)e(u2,1, π2,1) e(u1,1, π1,2)e(u2,1, π2,2)
· e(θ1,1, v1,1)e(θ2,1, v2,1) · e(θ1,1, v1,2)e(θ2,1, v2,2)

e(u1,2, π1,1)e(u2,2, π2,1) tT e(u1,2, π1,2)e(u2,2, π2,2)
· e(θ1,2, v1,1)e(θ2,2, v2,1) · e(θ1,2, v1,2)e(θ2,2, v2,2)

 .

By grouping pairings, we reduced the number of pairings on the left-hand side of
the equation from 5m+ 3n to 3m+ 2n, while the right-hand side remains at 16
pairings. Using the techniques explained in Section 4, i.e. taking each element
Mi,j of the equation to a random power ri,j , multiplying all the components,
and regrouping pairings, we get the following equation:

2∏
k=1

n∏
j=1

e
((∏m

i=1 c
γi,j

i,1

)r1,k
(
Aj
∏m
i=1 c

γi,j

i,2

)r2,k , dj,k
)
·
m∏
i=1

e
(
c
r1,2
i,1 c

r2,2
i,2 ,Bi

)
= e(ur1,1

1,1 u
r2,1
1,2 , π1,1)e(ur1,1

2,1 u
r2,1
2,2 , π2,1)e(θr1,1

1,1 θ
r2,1
1,2 , v1,1)e(θr1,1

2,1 θ
r2,1
2,2 , v2,1)

· e(ur1,2
1,1 u

r2,2
1,2 , π1,2)e(ur1,2

2,1 u
r2,2
2,2 , π2,2)e(θr1,2

1,1 θ
r2,2
1,2 , v1,2)e(θr1,2

2,1 θ
r2,2
2,2 , v2,2) · tr2,2

T

which requires m + 2n pairings and 2mn + 2m + 4n exponentiations in G1 for
the left part and 8 pairing computations and 16 exponentiations in G1 and
one exponentiation in GT for the right side of the equation. The alternative
expression

n∏
j=1

e
(
Aj , d

r2,1
j,1 d

r2,2
j,2

)
·

2∏
k=1

m∏
i=1

e
(
ci,k,

(∏n
j=1 d

γi,j

j,1

)rk,1
(
Bi
∏n
j=1 d

γi,j

j,2

)rk,2
)

for the left side of the equation requires 2m + n pairings and 2mn + 4m + 2n
exponentiations in G2.
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5.2 Multi-Scalar Multiplication Equation in G1

Here, we consider equations of Type (2) in G1 (the case of equations in G2,
which work analogously, is treated in the full version of the paper [BFI+10]).
The verification of a proof (~c, ~d′, ~π, θ) ∈ Gm×2

1 ×Gn×2
2 ×G 2×2

2 ×G 1×2
1 consists

in checking the following:[
ι1( ~A) • ~d′

]
�
[
~c • ι′2(~b)

]
�
[
~c • Γ ~d′

]
= ι̂T (T1)�

[
~u • ~π

]
� F (θ,v1).

Let ~c = (ci,k)1≤i≤m
1≤k≤2

∈ Gm×2
1 , ~d′ = (d′j,k)1≤j≤n

1≤k≤2
∈ Gn×2

2 , Γ = (γi,j)1≤i≤m
1≤j≤n

∈ Zm×np ,

~A = (Aj)1≤j≤n ∈ Gn×1
1 , ~b = (bi)1≤i≤m ∈ Zm×1

p . The left hand-side is equal to

0BBBBBBBB@

mY
i=1

e(ci,1, v
bi
2,1

Qn
j=1 d

′
j,1
γi,j )

mY
i=1

e(ci,1, (v2,2g2)bi
Qn
j=1 d

′
j,2
γi,j )

mY
i=1

e(ci,2, v
bi
2,1

Qn
j=1 d

′
j,1
γi,j )

mY
i=1

e(ci,2, (v2,2g2)bi
Qn
j=1 d

′
j,2
γi,j )

·
nY
j=1

e(Aj , d′j,1) ·
nY
j=1

e(Aj , d′j,2)

1CCCCCCCCA
while the right-hand side is equal to0B@ e(θ1, v1,1)e(u1,1, π1,1)e(u2,1, π2,1) e(θ1, v1,2)e(u1,1, π1,2)e(u2,1, π2,2)

e(θ2, v1,1)e(u1,2, π1,1)e(u2,2, π2,1) e(θ2, v1,2)e(u1,2, π1,2)e(u2,2, π2,2)
· e(T1, v2,1) · e(T1, g2v2,2)

1CA
By grouping the pairings, the number of pairings on the left-hand side of the
equation has already been reduced from 8m + 2n to 4m + 2n. Now, by using
the batch technique, i.e., multiplying each member by a random value and mul-
tiplying all the components, we obtain on the left-hand side

2Y
k=1

nY
j=1

e
``Qm

i=1 c
γi,j

i,1

´r1,k
`
Aj
Qm
i=1 c

γi,j

i,2

´r2,k , d′j,k
´

· e
“

(
Qm
i=1 c

bi
i,1)r1,1(

Qm
i=1 c

bi
i,2)r2,1 , v2,1

”
· e
“

(
Qm
i=1 c

bi
i,1)r1,2(

Qm
i=1 c

bi
i,2)r2,2 , v2,2g2

”
which requires 2mn + 2m + 4n + 4 exponentiations in G1 and 2n + 2 pairing
computations. The alternative expression
nY
j=1

e
“
Aj ,

2Y
k=1

d′j,k
r2,k
” 2Y
k=1

mY
i=1

e
“
ci,k,

“
vbi2,1

nY
j=1

d′j,1
γi,j
”rk,1

“
(v2,2g2)bi

nY
j=1

d′j,2
γi,j
”rk,2

”
for the left side of the equation requires 2mn+ 6m+ 2n exponentiations in G2

and 2m + n pairing computations. On the right-hand side, the same technique
achieves a reduction from 14 to 7 pairings:

e(θr1,1
1 θ

r2,1
2 , v1,1)e(θr2,1

1 θ
r2,2
2 , v1,2)e(ur1,1

1,1 u
r2,1
1,2 , π1,1)e(ur1,1

2,1 u
r2,1
2,2 , π2,1)

· e(ur1,2
2,1 u

r2,2
2,2 , π1,2)e(ur2,1

2,1 u
r2,2
2,2 , π2,2)e(T1, v

r2,1
2,1 (g2v2,2)r2,2)

9



5.3 Quadratic Equation

The verification of (~c′, ~d′, π, θ) ∈ Gm×2
1 ×Gn×2

2 ×G 1×2
2 ×G 1×2

1 for an equation
of Type (3) consists in checking[

ι′1(~a) • ~d′
]
�
[
~c′ • ι′2(~b)

]
�
[
~c′ • Γ ~d′

]
= ι′T (t)� F (u1, π)� F (θ,v1) .

Let ~c′ = (c′i,k)1≤i≤m
1≤k≤2

∈ Gn×2
1 , ~d′ = (d′j,k)1≤j≤n

1≤k≤2
∈ Gn×2

2 , Γ = (γi,j)1≤i≤m
1≤j≤n

∈ Zm×np ,

~a = (aj)1≤j≤n ∈ Zn×1
p , ~b = (bi)1≤i≤m ∈ Zm×1

p . The left hand side is equal to

0BBBBBBBBBBBB@

mY
i=1

e(c′i,1, v
bi
2,1)

mY
i=1

e(c′i,1, (v2,2g2)bi)

·
nY
j=1

e
`
u
aj

2,1

Qm
i=1 c

′
i,1
γi,j , d′j,1

´
·
nY
j=1

e
`
u
aj

2,1

Qm
i=1 c

′
i,1
γi,j , d′j,2

´
mY
i=1

e(c′i,2, v
bi
2,1)

mY
i=1

e(c′i,2, (v2,2g2)bi)

·
nY
j=1

e
`
(u2,2g1)aj

Qm
i=1 c

′
i,2
γi,j , d′j,1

´
·
nY
j=1

e
`
(u2,2g1)aj

Qm
i=1 c

′
i,2
γi,j , d′j,2

´

1CCCCCCCCCCCCA
Denoting π = (π1, π2) and θ = (θ1, θ2) , for the right-hand side we have(

e(u1,1, π1)e(θ1, v1,1)e(u2,1, v2,1)t e(u1,1, π2)e(θ1, v1,2)e(u2,1, v2,2g2)t

e(u1,2, π1)e(θ2, v1,1)e(u2,2g1, v2,1)t e(u1,2, π2)e(θ2, v1,2)e(u2,2g1, v2,2g2)t

)
By grouping the pairings, the number of pairings on the left-hand side mem-

ber of the equation has been reduced from 8m+8n to 4m+4n. By using the batch
technique, i.e., multiplying each member by a random value and multiplying all
the members, we obtain on the left-hand side:

e
““ mY

i=1

c′i,1
bi
”r1,1

“ mY
i=1

c′i,2
bi
”r2,1

, v2,1
”
· e
““ mY

i=1

c′i,1
bi
”r1,2

“ mY
i=1

c′i,2
bi
”r2,2

, v2,2g2
”

·
2Y
k=1

nY
j=1

e
“ 

u
aj

2,1

mY
i=1

c′i,1
γi,j
”r1,k

“
(u2,2g1)aj

mY
i=1

c′i,2
γi,j

!r2,k

, d′j,k

”
which requires 2mn + 2m + 6n + 4 exponentiations in G1 and 2n + 2 pairing
computations. Alternatively, the left-hand side is also equal to

e
“
u2,1,

“ nY
j=1

d′j,1
aj
”r1,1

“ nY
j=1

d′j,2
aj
”r1,2

”
· e
“
u2,2g2,

“ nY
j=1

d′j,1
aj
”r2,1

“ nY
j=1

d′j,2
aj
”r2,2

”

·
2Y
k=1

mY
i=1

e
“
c′i,k,

“
vbi2,1

nY
j=1

d′j,1
γi,j
”rk,1

“
(v2,2g2)bi

nY
j=1

d′j,2
γi,j
”rk,2

”
which requires 2mn + 6m + 2n + 4 exponentiations in G2 and 2m + 2 pairing
computations. On the right-hand side, the same technique achieves a reduction

10



from 12 to 6 pairings:

e(ur1,1
1,1 u

r2,1
1,2 , π1)e(ur1,2

1,1 u
r2,2
1,2 , π2)e(θr1,1

1 θ
r2,1
2 , v1,1)e(θr1,2

1 θ
r2,2
2 , v1,2)

· e(ur1,1t
2,1 (u2,2g1)r2,1t, v2,1)e(ur1,2t

2,1 (u2,2g1)r2,2t, v2,2g2)

6 Instantiation 3: DLIN

6.1 Pairing-Product Equation

The verification relation of a proof (~d, φ) ∈ Gn×3×G3×3 for equation Type (1′)
is the following: [

ι( ~A)
s• ~d
]
�
[
~d
s• Γ~d

]
= ιT (tT )�

[
~u
s• ~φ
]

For simplicity, we consider the squares of all GT elements on both sides of the
equation. Writing Γ~d as

(∏n
k=1 d

γi,k

k,j

)
1≤i≤n
1≤j≤3

and replacing the bilinear product

s• by its definition, we get for the left-hand side:0BBBBBBBBBBBBBBBBBBBBB@

nY
i=1

e(di,1,
Q
d
γi,k

k,1 )2
nY
i=1

e(di,1,
Q
d
γi,k

k,2 )

nY
i=1

e(Ai, di,1)e(di,1,
Q
d
γi,k

k,3 )

·e(di,2,
Q
d
γi,k

k,1 ) ·e(di,3,
Q
d
γi,k

k,1 )

nY
i=1

e(di,2,
Q
d
γi,k

k,1 )

nY
i=1

e(di,2,
Q
d
γi,k

k,2 )2
nY
i=1

e(Ai, di,2)e(di,2,
Q
d
γi,k

k,3 )

·e(di,1,
Q
d
γi,k

k,2 ) ·e(di,3,
Q
d
γi,k

k,2 )

nY
i=1

e(Ai, di,1)

nY
i=1

e(Ai, di,2)

nY
i=1

e(Ai, di,3)2

·e(di,3,
Q
d
γi,k

k,1 ) ·e(di,3,
Q
d
γi,k

k,2 ) ·e(di,3,
Q
d
γi,k

k,3 )2

·e(di,1,
Q
d
γi,k

k,3 ) ·e(di,2,
Q
d
γi,k

k,3 )

1CCCCCCCCCCCCCCCCCCCCCA
For the right-hand side, we get:

3∏
i=1

e(ui1, φi1)2
3∏
i=1

e(ui1, φi2)e(ui2, φi1)
3∏
i=1

e(ui1, φi3)e(ui3, φi1)
3∏
i=1

e(ui2, φi1)e(ui1, φi2)
3∏
i=1

e(ui2, φi2)2
3∏
i=1

e(ui2, φi3)e(ui3, φi2)

3∏
i=1

e(ui3, φi1)e(ui1, φi3)
3∏
i=1

e(ui3, φi2)e(ui2, φi3) t 2T

3∏
i=1

e(ui3, φi3)2


Taking each component Mi,j of the equation to the power of ri,j , multiplying
all components, and regrouping pairings, we get the following for the left-hand
side:
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∏n
i=1 e

(
di,1, A

r1,3+r3,1
i

∏
d
γi,k2·r1,1
k,1 d

γi,k(r1,2+r2,1)
k,2 d

γi,k(r1,3+r3,1)
k,3

)
·

e
(
di,2, A

r2,3+r3,2
i

∏
d
γi,k(r1,2+r2,1)
k,1 d

γi,k2·r2,2
k,2 d

γi,k(r2,3+r3,2)
k,3

)
·

e
(
di,3, A

2·r3,3
i

∏
d
γi,k(r1,3+r3,1)
k,1 d

γi,k(r2,3+r3,2)
k,2 d

γi,k2r3,3
k,3

)
(4)

and for the right-hand side:∏3
i=1 e

(
ui,1, φ

2·r1,1
i,1 φ

r1,2+r2,1
i,2 φ

r1,3+r3,1
i,3

)
· e
(
ui,2, φ

r1,2+r2,1
i,1 φ

2·r2,2
i,2 φ

r2,3+r3,2
i,3

)
· e
(
ui,3, φ

r1,3+r3,1
i,1 φ

r2,3+r3,2
i,2 φ

2·r3,3
i,3

)
· t2r3,3
T

Due to the fact that u1,2 = u2,1 = 1, and u1,3 = u2,3 (cf. Section 3) this simplifies
to:

e
(
u1,1, φ

2·r1,1
1,1 φ

r1,2+r2,1
1,2 φ

r1,3+r3,1
1,3

)
· e
(
u2,2, φ

r1,2+r2,1
2,1 φ

2·r2,2
2,2 φ

r2,3+r3,2
2,3

)
· e
(
u1,3, (φ1,1φ2,1)r1,3+r3,1(φ1,2φ2,2)r2,3+r3,2(φ1,3φ2,3)2·r3,3

)
· e
(
u3,1, φ

2·r1,1
3,1 φ

r1,2+r2,1
3,2 φ

r1,3+r3,1
3,3

)
· e
(
u3,2, φ

r1,2+r2,1
3,1 φ

2·r2,2
3,2 φ

r2,3+r3,2
3,3

)
·

e
(
u3,3, φ

r1,3+r3,1
3,1 φ

r2,3+r3,2
3,2 φ

2·r3,3
3,3

)
· t2r3,3
T

We reduce the number of pairings from 12n+27 to 3n+6 pairings at the expense
of adding 9n2 + 3n exponentiations in G and one exponentiation in GT .

6.2 Multi-Scalar Multiplication and Quadratic Equations

The description of the batch verification of multi-scalar multiplication equation
and quadratic equation is similar to the previous one. Due to space constraints
it is given in the full version [BFI+10].

7 Application 1: Groth’s Group Signatures

7.1 Description

We demonstrate our techniques by applying them to one of the most practical
fully-secure group-signature schemes in the standard model to date: Groth’s
construction [Gro07]. Groth proposed a methodology of transforming certified
signatures [BFPW07] that respect a certain structure into group signatures using
Groth-Sahai NIWI proofs:

– a member picks a key pair for the certified-signature scheme and asks the
issuer to certify her verification key;

– to produce a group signature, the member makes a certified signature, en-
crypts it and makes a NIWI proof that demonstrates that the ciphertext
contains a valid certified signature.

12



Groth proposed an efficient certified-signature scheme based on the so called
q-U assumption (see [Gro07] for details). In the CPA-anonymous version6 of the
scheme, the issuer’s public key is a triple (f, h, T ) ∈ G2 × GT (and its private
key is z ∈ G such that e(f, z) = T ) and the certificate for a group member
with public key v = gx ∈ G is a pair (a, b) satisfying e(a, vh) e(f, b) = T . To
sign a message m ∈ Zp, the group member first computes a weak Boneh-Boyen
signature [BB08] σ = g1/(x+m) using her private key x; then she forms Groth-
Sahai commitments dv, db and dσ to the group elements v, b and σ, resp., and
makes a proof that they satisfy the following:

e(a, vh) e(f, b) = T e(σ, gmv) = e(g, g) (5)

The fact that a is given in the clear is not a problem since the certificate is
malleable, so the group member can unlinkably re-randomize it each time she
signs a message. A group signature is thus of the form (a,db,dv,dσ, ψ, φ), where
ψ and φ denote the Groth-Sahai proofs for the two equations in (5), respectively.

We first instantiate our generic batch construction to verify a single signature
more efficiently and then show how to verify multiple signatures at once. The
first equation is of a particular form that allows for more efficient proofs and
verification. We describe the verification relations and the batch verification in
the next section.

7.2 Batching Linear Pairing-Product Equations

We consider a special case of pairing-product equations for which Γ = 0, called
linear equations, i.e. the equation is of the following form: 〈 ~A, ~Y〉 = tT , that is∏n
i=1 e(Ai,Yi) = tT . In this case, the proof simplifies to three group elements and

is verified as follows (taking into account that u1,2 = u2,1 = 1, and u1,3 = u2,3):∏n
i=1 e(Ai, di,1) = e(u11, ψ1) e(u31, ψ3)∏n
i=1 e(Ai, di,2) = e(u22, ψ2) e(u32, ψ3)∏n
i=1 e(Ai, di,3) = tT e(u13, ψ1ψ2) e(u33, ψ3)

which can be batch-verified by checking7

nY
i=1

e(Ai, ds1i,1d
s2
i,2d

s3
i,3)

= t s3T e(u11, ψ
s1
1 ) e(u13, (ψ1ψ2)s3) e(u22, ψ

s2
2 ) e(u31, ψ

s1
3 ) e(u32, ψ

s2
3 ) e(u33, ψ

s3
3 ) .(6)

6 Groth also proposes group signatures achieving CCA-anonymity [BSZ05]; for illus-
trative purposes we restrict ourselves to the basic CPA-anonymous scheme here.

7 If we considered a single set of equations then it would be more efficient to order the
right-hand side by the ψi’s and save 3 pairings. We order by the uij though, since
this enables us to batch with other equations containing pairings of these constants.
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7.3 Batching the Equations for One Group Signature
1st Equation. Instantiating (6) for first equation in (5), we get, after some
more optimization (shifting e(a, h−1))s3 to the left-hand side of the equation)

e(ds1v,1d
s2
v,2(dv,3h)s3 , a) e(ds1b,1d

s2
b,2d

s3
b,3, f) =

T s3 e(u11, ψ
s1
1 ) e(u13, (ψ1ψ2)s3) e(u22, ψ

s2
2 ) e(u31, ψ

s1
3 ) e(u32, ψ

s2
3 ) e(u33, ψ

s3
3 )

2nd Equation. Setting ~A :=
(
gm

1

)
, ~Y :=

(
σ
v

)
, Γ :=

(
0 1
0 0

)
, tT := e(g, g),

d1 := dσ and d2 := dv and substituting in (4), we get

e
`
dσ1, (gmdv3)(r13+r31)d2·r11

v1 d
(r12+r21)
v2

´
e
`
dσ2, (gmdv3)(r23+r32)d

(r12+r21)
v1 d2·r22

v2

´
· e
`
dσ3, (gmdv3)2·r33d

(r13+r31)
v1 d

(r23+r32)
v2

´
=

e
`
u11, φ

2·r11
11 φr12+r21

12 φr13+r31
13

´
e
`
u13, (φ11φ21)r13+r31(φ12φ22)r23+r32(φ13φ23)2·r33

´
· e
`
u22, φ

r12+r21
21 φ2·r22

22 φr23+r32
23

´
e
`
u31, φ

2·r11
31 φr12+r21

32 φr13+r31
33

´
· e
`
u32, φ

r12+r21
31 φ2·r22

32 φr23+r32
33

´
e
`
u33, φ

r13+r31
31 φr23+r32

32 φ2·r33
33

´
e(g, g2r33) .

Multiplying the two equations we get a single verification relation of the following
form:

e(ds1v,1d
s2
v,2(dv,3h)s3 , a) e(ds1b,1d

s2
b,2d

s3
b,3, f)e

`
dσ1, (gmdv3)(r13+r31)d2·r11

v1 d
(r12+r21)
v2

´
· e
`
dσ2, (gmdv3)(r23+r32)d

(r12+r21)
v1 d2·r22

v2

´
e
`
dσ3, (gmdv3)2·r33d

(r13+r31)
v1 d

(r23+r32)
v2

´
=
`
T s3e(g, g2r33)

´
e
`
u13, (φ11φ21)r13+r31(φ12φ22)r23+r32(φ13φ23)2·r33(ψ1ψ2)s3

´
e
`
u11, φ

2·r11
11 φr12+r21

12 φr13+r31
13 ψs11

´
· e
`
u22, φ

r12+r21
21 φ2·r22

22 φr23+r32
23 ψs22

´
e
`
u31, φ

2·r11
31 φr12+r21

32 φr13+r31
33 ψs13

´
· e
`
u32, φ

r12+r21
31 φ2·r22

32 φr23+r32
33 ψs23

´
· e
`
u33, φ

r13+r31
31 φr23+r32

32 φ2·r33
33 ψs33

´
Analysis. With no use of batching techniques, the verification of a single sig-
nature takes for the first equation 13 pairings and for the second 20 pairings for
the left-hand side and 35 for its right-hand side. This is an overall of 68 pairing
evaluations, compared to 11 for the batched verification.

7.4 Batching Several Group Signatures

Consider the situation where we want to verify multiple group signatures at
once. That is given a group public key (f, h, T, u11, u13, u22, u31, u32, u33) and n
group signatures(

a(k),d(k)
b ,d(k)

v ,d(k)
σ , (ψ(k)

i )1≤i≤3, (φ
(k)
ij )1≤i,j≤3

)
.

Using the same technique of taking each of the (new) equations to the power of
some randomness and multiplying them, we can unify the pairings e(·, f) on the
left-hand side and all pairings (which are of the form e(uij , ·)) on the right-hand
side. Instead of 11n pairings needed when checking each equation, the batched
version only requires 4n+ 7 pairings.
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8 Application 2: P-signatures

8.1 Description

Belenkiy et al. [BCKL08] formalize digital signature schemes with an addi-
tional non-interactive proof of signature possession that they called P-signature
schemes. They proposed two constructions8: the first is based on the weak Boneh-
Boyen signature scheme [BB08] while the second one is inspired by its full version.

Since Belenkiy et al.’s first scheme relies on a rather strong assumption, we
consider only their second proposal: a signature σ on a message m ∈ Zp is a
triple σ = (C1, C2, C3) ∈ G1 × G2 × G1 such that e(C1, vh

mC2) = e(g, h) and
e(f, C2) = e(C3, w), where f and g are (public) generators of G1, h is a (public)
generator of G2 and v, w ∈ G2 are parts of the signer’s public key. To prove
possession of such a signature, a prover forms the Groth-Sahai commitments c1,
c2 and c3 for the group elements C1,M1 = fm, C3 in G1 and d1 and d2 for the
group elements M2 = hm and C2 in G2 (respectively) and provides a proof that
they satisfy:

e(C1, vM2C2) = e(g, h), e(f, C2) = e(C3, w) and e(f,M2) = e(M1, h) (7)

8.2 SXDH Instantiation

In [BCKL08], the authors evaluated that the verification of the proof in the
SXDH instantiation requires the computation of 68 pairings. In the full version
of this paper [BFI+10] we show that it can be reduced to 15.

8.3 DLIN Instantiation

As in Section 7, the last two pairing-product equations from (7) are actually
linear pairing-product equations. We denote the Groth-Sahai commitments for
the group elements C1, C2, C3,M1 = fm,M2 = hm in G by d1,d2, d3, d4 and
d5 (respectively) and by φ, ψ and θ the proofs that they satisfy the first, the
second and the third equation (respectively). For the first equation, setting and
substituting

~A =

(
v
1
1

)
, ~d =

(
d1

d2

d5

)
, Γ =

(
0 1 1
0 0 0
0 0 0

)
and tT = e(g, g)

in (4), we get:

e
`
d1,1, (v d2,3 d5,3)r1,3+r3,1(d2,1 d5,1)2r1,1(d2,2 d5,2)(r1,2+r2,1)´

· e
`
d1,2, (v d2,3 d5,3)r2,3+r3,2(d2,1 d5,1)r1,2+r2,1(d2,2 d5,2)2r2,2

´
· e
`
d1,3, (v d2,3 d5,3)2r3,3(d2,1 d5,1)r1,3+r3,1(d2,2 d5,2)r2,3+r3,2

´
=

8 An extended version of their scheme was recently proposed [BCKL09] but here we
restrict ourselves to the basic scheme from [BCKL08].
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= e
`
u1,1, φ

2·r1,1
1,1 φ

r1,2+r2,1
1,2 φ

r1,3+r3,1
1,3

´
· e
`
u2,2, φ

r1,2+r2,1
2,1 φ

2·r2,2
2,2 φ

r2,3+r3,2
2,3

´
· e
`
u1,3, (φ1,1φ2,1)r1,3+r3,1(φ1,2φ2,2)r2,3+r3,2(φ1,3φ2,3)2·r3,3

´
· e
`
u3,1, φ

2·r1,1
3,1 φ

r1,2+r2,1
3,2 φ

r1,3+r3,1
3,3

´
· e
`
u3,2, φ

r1,2+r2,1
3,1 φ

2·r2,2
3,2 φ

r2,3+r3,2
3,3

´
· e
`
u3,3, φ

r1,3+r3,1
3,1 φ

r2,3+r3,2
3,2 φ

2·r3,3
3,3

´
· e(g, g)2r3,3 .

Substituting ~A =
(

f
w−1

)
, ~d =

(
d2

d3

)
, tT = 1, and ~A =

(
f
h−1

)
, ~d =

(
d5

d4

)
,

tT = 1 (respectively) in (6), we obtain the second and third equation. Once the
three equations multiplied, we obtain:

e
`
d1,1, (v d2,3 d5,3)r1,3+r3,1(d2,1 d5,1)2r1,1(d2,2 d5,2)(r1,2+r2,1)´

e
`
d1,2, (v d2,3 d5,3)r2,3+r3,2(d2,1 d5,1)r1,2+r2,1(d2,2 d5,2)2r2,2

´
e
`
d1,3, (v d2,3 d5,3)2r3,3(d2,1 d5,1)r1,3+r3,1(d2,2 d5,2)r2,3+r3,2

´
e(f, ds12,1d

s2
2,2d

s3
2,3d

t1
5,1d

t2
5,2d

t3
5,3)e(w−1, ds13,1d

s2
3,2d

s3
3,3)e(h−1, dt14,1d

t2
4,2d

t3
4,3)

= e
`
u1,3, (φ1,1φ2,1)r1,3+r3,1(φ1,2φ2,2)r2,3+r3,2(φ1,3φ2,3)2·r3,3(ψ1ψ2)s3(θ1θ2)t3

´
· e
`
u1,1, φ

2·r1,1
1,1 φ

r1,2+r2,1
1,2 φ

r1,3+r3,1
1,3 ψs11 θt11

´
· e
`
u2,2, φ

r1,2+r2,1
2,1 φ

2·r2,2
2,2 φ

r2,3+r3,2
2,3 ψs22 θt22

´
· e
`
u3,1, φ

2·r1,1
3,1 φ

r1,2+r2,1
3,2 φ

r1,3+r3,1
3,3 ψs13 θt13

´
· e
`
u3,2, φ

r1,2+r2,1
3,1 φ

2·r2,2
3,2 φ

r2,3+r3,2
3,3 ψs23 θt23

´
e
`
u3,3, φ

r1,3+r3,1
3,1 φ

r2,3+r3,2
3,2 φ

2·r3,3
3,3 ψs33 θt33

´
e(g, g)2r3,3

In [BCKL08], the authors evaluated that the verification of the proof in the DLIN
instantiation requires the computation of 126 pairings. With our result, we prove
it can be reduced to 12.

Batching Several P-Signatures. As in the previous section, in case we want
to verify multiple P-signatures at once, we can unify the pairings containing f, h
and w on the left-hand side and all pairings (which are of the form e(ui,j , ·)) on
the right-hand side. Instead of 15n (resp. 12n) pairings needed when checking
each equation, the batched version only requires 2n+ 13 (resp. 3n+ 9) pairings.

9 Conclusion

In this paper, we presented efficiency improvements for the verification of Groth-
Sahai non-interactive zero-knowledge and witness-indistinguishable proofs and
two privacy-preserving authentication schemes, saving up to 90% of the (domi-
nant) pairing operations. These results can be combined with known methods to
compute the product of many pairing evaluations efficiently [GS06]. Our results
notably provide the first algorithm to batch-verify a group signature scheme in
the standard model (an open problem raised in [FGHP09]) and, surprisingly,
demonstrate that thanks to batch verification techniques, the DLIN instantia-
tion of the Groth-Sahai proof system may be the most efficient implementation
for the verification of a single signature.
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