Achieving Optimal Anonymity in Transferable
E-cash with a Judge*

Olivier Blazy', Sébastien Canard?, Georg Fuchsbauer?,
Aline Gouget*, and Jacques Traoré?

! Ecole Normale Supérieure — CNRS — INRIA, Paris, France
2 Orange Labs — Applied Crypto Group, Caen, France
3 University of Bristol — Dept. Computer Science, UK
4 Gemalto — Security Lab, Meudon, France

Abstract. Electronic cash (e-cash) refers to money exchanged electron-
ically. The main features of traditional cash are usually considered also
desirable in the context of e-cash. This is for example the case for off-
line transferability, meaning the recipient of cash in a transaction can
transfer received money in a later payment transaction to a third per-
son without contacting a central authority. Among security properties,
the anonymity of the payer in such transactions has been widely stud-
ied. This paper proposes the first efficient and secure transferable e-cash
scheme with the strongest achievable anonymity properties, as introduced
at ACNS 2008. In particular, it should not be possible for adversaries
who receive a coin to decide whether they have owned that coin before.
Our proposal is based on two recent cryptographic primitives: the proof
system by Groth and Sahai, whose randomizability enables the strongest
notions of anonymity, and the commuting signatures by Fuchsbauer.

Keywords. Transferable e-cash, anonymity, Groth-Sahai proofs, com-
muting signatures.

1 Introduction

While electronic cash has long been one of the most challenging problems in
cryptography, its use in practice remains rare. Indeed, despite the numerous
benefits it may provide, e-cash still has many significant disadvantages. These
include susceptibility to fraud, failure of technology and possible surveillance of
individuals. With the recent emergence of new communication means and the
availability of many applications for smart phones, the interest of the crypto-
graphic community in electronic money has returned. Recent technologies pro-
vide the foundations for novel and desirable features such as, among others, the
transferability of digital money. The desired security properties for e-cash are
today well-known and for transferable e-cash systems anonymity is a particularly
delicate issue.

* This work has been financially supported by the French Agence Nationale de la
Recherche under the PACE 07 TCOM project and by the European Commission’s
Seventh Framework Programme (FP7) under contract number ICT-2007-216676
ECRYPT II, while the third author was at Ecole normale supérieure, Paris, France.

Anonymity properties in transferable e-cash. The traditional properties of anony-
mous electronic cash are called weak anonymity and strong anonymity. The for-
mer means that it is infeasible for an attacker to identify the spender or the
recipient in a transaction, and the latter states that it is infeasible for an at-
tacker to decide whether two transactions are done by the same user or not.
In [6] Canard and Gouget give a complete taxonomy of anonymity properties
for transferable e-cash systems. They observe that in the transferability setting
the attacker may recognize a coin that he has already observed during previous
spends. Thus, in addition to the two above traditional properties, they intro-
duce full anonymity (FA), which means that an attacker is not able to recognize
a coin he has already observed during a transaction between two honest users
(“observe then receive”). They also introduce perfect anonymity (PA), defined
as an attacker’s inability to decide whether he has already owned a coin he is
receiving.

Chaum and Pedersen [8] showed that a payer with unlimited computing
power can always recognize his own money if he sees it later being spent; thus,
the PA property cannot be achieved against unbounded adversaries. But even
when his power is limited, an adversary impersonating the bank can still win
the anonymity game, as shown in [6]. Perfect anonymity can therefore not be
achieved by a transferable e-cash scheme. Due to this impossibility result, Ca-
nard and Gouget [6] introduce two additional anonymity notions called PA;
and PA,. In order to break PA;, the adversary is given a coin and must decide
whether he has already (passively) seen it in a past transaction (“spend then
observe”). For PA,, the bank is trusted and the adversary should not be able to
decide whether or not he has already owned a coin he is receiving (“spend then
receive”). It is shown in [6] that both properties PA; and PAs are satisfiable and
that a transferable e-cash scheme should satisfy full anonymity, PA; and PAs
in order to achieve“optimal” anonymity guarantees. In this paper we maintain
these anonymity notions but slightly modify the used terminologies to improve
readability.

Related work. Many transferable e-cash schemes have been proposed, but most
of them only provide weak [12,13] or strong anonymity [15,8,7,4]. A generic
construction of a transferable e-cash system with FA and PA; security from a
one satisfying strongly anonymity is shown in [6]. PAy remains thus the property
that is hardest to achieve.

The first proposal of a transferable e-cash scheme satisfying PAs is a theo-
retical scheme in [6] that cannot be implemented effectively. This is due to its
use of complex meta-proofs [14] which allow the blinding of previous transfers
of a coin, even for a previous owner of that coin.

Subsequently, Fuchsbauer et al. [10] proposed the first practical PAs-secure
scheme. However, their scheme has the important drawbacks that (i) each user
has to keep in memory the data associated to all past transactions to prove her
innocence in case of a fraud and (ii) the anonymity of all subsequent owners of
a double-spent coin must be revoked in order to trace the fraudster.

In conclusion, the remaining open problem is an efficient transferable e-cash
scheme satisfying all anonymity properties including PAs.

Our contribution. In this paper, we propose such a scheme. More precisely, we
describe a new transferable e-cash scheme based on the work on randomization
of Groth-Sahai proofs [11,2] and on the recent primitive of commuting signa-
tures [9] based on them. This yields a new way to efficiently blind previous
transfers of a coin and permits to achieve the PAs property, without requiring
the users to store anything. We moreover believe that the use of Groth-Sahai
proofs and commuting signatures in concrete cryptographic applications is tech-
nically interesting.

There is a lot of concern regarding anonymity for electronic cash with re-
spect to illegal activities, such as money laundering or financing of terrorism. A
possible compromise between user privacy and the prevention of its abuse is to
provide the opportunity to appeal to a judge either in case of double-spending
or in a court case. In our proposal we introduce a trusted authority called judge
which retrieves the identity of the fraudster after detection of a double-spending
(while detection can be performed locally by the bank). Although we do not
consider this explicitly, the judge could additionally trace coins and users, as re-
quired for fair e-cash [16]. We argue that the use of Groth-Sahai proofs—which,
besides not relying on the random-oracle heuristic and being efficient, are the
only randomizable proofs known to date—requires a common reference string
(CRS). Therefore, instead of assuming the existence of a trusted CRS “in the
sky”, we entrust the judge with its setup and let him use the contained trapdoor
constructively rather than “forgetting” it.

The paper is now organized as follows. In Section 2 we present the procedures
constituting a transferable e-cash scheme with a judge, and we detail its security
properties in Section 3. In Section 4 we give the main cryptographic tools used
to instantiate our scheme, which we describe in Section 5.

2 Definitions for Transferable E-cash with Judge

In this section, we first describe the algorithms for transferable e-cash, involving
a bank B, users U and a judge J. We extend the model given in [6] to include the
judge authority. Moreover, in accordance with [6], the bank B may be divided
into two entities: W for the withdrawal phase and D for the deposit phase.

2.1 Algorithms

For simplicity and contrary to [6], we represent a coin simply as a value ¢, while
its identifier Id is the value that the bank retrieves during a deposit to check
for double-spending. Formally, a transferable e-cash system with judge, denoted
11, is composed of the following procedures, where X is a security parameter.

— ParamGen(1%) is a probabilistic algorithm that outputs the parameters of
the system par. In the following, we assume that par contains A and that it
is a default input of all the other algorithms.

— BKeyGen(), JKeyGen() and UKeyGen() are probabilistic algorithms executed
respectively by B, J or U, that output a key pair. When BKeyGen() is
executed by B, the output is (skg, pkg). The secret key skp may be divided
into two parts: skyy for the withdrawal phase and skp for the deposit phase.
Consequently, we define separate algorithms WKeyGen() and DKeyGen() for
the bank’s key generation. The output of JKeyGen() is a keypair (sk, pk_)
for the judge, and UKeyGen() outputs (sky, pky,)-

— Withdraw(W(skyy, pky,],U[sku, pky]) is an interactive protocol where U with-
draws from B one transferable coin. At the end, U either gets a coin ¢ and
outputs ok, or it outputs L. The output of B is either its view ng of the
protocol (including pky), or L in case of error.

— Spend(U [c, sku, , Pk, Pk 7], Uz [skus, , Pk, Pk 7]) is an interactive protocol in
which U/, spends the coin ¢ to Us. At the end, Us outputs either a coin ¢’ or
L, and U either saves that c is a spent coin and outputs ok, or outputs L.

— Deposit(U|ec, sky, pkg, D[skp, pky, L£]) is an interactive protocol where U de-
posits a coin ¢ at the bank B. If ¢ is not consistent/fresh, then B outputs ;.
Else, B computes the identifier Id of the deposited coin. If £, the list of spent
coins, contains an entry (Id,c’), for some ¢/, then B outputs (s, Id, ¢, c).
Else, B adds (Id,c) to its list £, credits U’s account, and returns L. U’s
output is ok or L.

— Identify(Id, c,c,sks) is a deterministic algorithm executed by the judge J
that outputs a key pk;, and a proof 7¢. If the users who had submitted ¢
and ¢’ are not malicious, then 7¢ is a proof that pk;, is the registered key
of a user that double-spent a coin. If Id = 0, this signifies that the judge
cannot conclude.

— VerifyGuilt(pky, 7¢) is a deterministic algorithm that can be executed by
anyone. It outputs 1 if 74 is correct and 0 otherwise.

The main differences between these algorithms and those described in [6] is the
additional of a new definition of the key generation algorithm JKeyGen() and the
modification of the procedure to identify a fraudster in case of a double-spending
detection.

2.2 Global Variables and Oracles

Before formalizing the security properties, we first define the adversary’s means
of interaction with his challenger in a transferable e-cash system: we introduce
global variables (according to [6]) and oracles®.

Global variables. The set of public (resp. secret) user keys is denoted by P =
{(i,pk;) : i € N} (resp. SKK = {(4,sk;) : i € N} with sk; =L if user ¢ is corrupted).
The set of views by the bank of the withdrawals done by the adversary is denoted
by SC (for supplied coins) and the set of all coins owned by the oracles is denoted
by OC (for obtained coins). The set of deposited electronic cash (corresponding

! By convention, the name of an oracle corresponds to the action done by this oracle.

to L) is denoted by DC (for deposited coins). In addition, we define the set of
users who have received a coin from the adversary, is denoted by RU, and the
set of users who have spent a coin to the adversary, is denoted by SU. These
modifications are done in order to improve the understanding of the original
description of oracles provided in [6].

Creation and corruption of users. The oracle Create(i) executes (sk;, pk;)
UKeyGen(), defines PK[i] = pk; and SK[i] = sk;, and outputs pk,. The oracle
Corrupt(4, pk;) defines PK[i] = pk; and SK[i] =L, and outputs ok. If the input
pk; is L then this oracle outputs SK[i] and then sets SK[i] =L. In all cases, the
coins belonging to user ¢, stored in OC, are also given to A.

Withdrawal protocol.

— The oracle BWith() plays the bank side of a Withdraw protocol. It updates
SC by adding V¥ with bit 1 to flag it as a corrupted coin.

— The oracle UWith(%) plays the user ¢ in a Withdraw protocol. It updates OC
by adding the value (i, j,¢) with flag 1, where j is the first empty entry of
OC (independently of the user ¢ to which it belongs).

— The oracle With(i) simulates a complete Withdraw protocol, playing the role
of both B and user 7, updates OC as for UWith(¢) and updates SC by adding
V¥ both with flag 0. It outputs the communications between B and U.

Spending protocol. Here we take into account that during a Spend protocol the
adversary can play the role of the payer, the receiver, or can only be passive.
This will be relevant for the anonymity experiments in Section 3.4.

— The oracle Rev(i) allows A to spend a coin to user i. The oracle plays the
role of Uy with the secret key of user 7 in the Spend protocol. It updates the
set OC by adding a new entry (i, 7, ¢) and adds ¢ to the set RU.

— The oracle Spd(i, j) enables A to receive either the coin j or a coin transferred
from user i. Either ¢ or j can be undetermined (equal to L). The owner i of
the spent coin j is then added to SU. The oracle plays the role of user U; in
the Spend protocol with the secret key of the owner i of the coin j in OC.
It uses the entry (4,7, ¢) of OC as the Spend protocol describes it. It finally
updates this entry by changing the flag to 1.

— The oracle Spd&Rcv permits A to observe the spending of a coin j between
users 41 (in the role of U;) and iz (in the role of Us), who are both played by
the oracle. It updates OC by adding (i, j’,c) and by flagging the coin j as
spent by i1. It outputs all the (external) communications of the spending.

Deposit protocol. 2

2 The main difference between these oracles and those described in [6] is the mod-
ification of the oracle BDepo() and the definition of the new oracle Idt(Id,c,c’).
In [6] there is a single oracle CreditAccount(), which executes both BDepo() and
Ident(Id, c,c’). This modification is necessitated by the inclusion of the judge.

— The oracle BDepo() plays the role of the bank during a Deposit protocol and
interacts with the adversary. The oracle finally gives the output of Deposit
procedure and updates the set DC.

— The oracle UDepo(i, ¢) plays the role of the user ¢ during a Deposit protocol
for the coin c. The adversary is in this case the bank. If ¢ =1 then the oracle
randomly chooses one coin belonging to user ¢ and deposits it.

— The oracle Depo(i, c) plays the role of both the bank and the user ¢ in the
Deposit protocol of the coin c. If ¢ =L, then the oracle randomly chooses the
coin to be deposited.

— The oracle Idt(Id, ¢, ¢’) plays the role of the judge in the ldentify procedure,
with the same outputs.

A consequence of the result by Chaum and Pedersen [8], who showed that a
transferred coin necessarily grows in size, is that an adversary may easily break
anonymity by checking the number of times a given coin has been transferred.
In the following, we say that two users iy and ¢; are compatible, and write
comp(ig,i1) = 1, if they both own at least one coin with the same size.

3 Security Properties

In this section, we define the security notions for an e-cash system with a judge,
adapting those from Canard and Gouget [6]. In every security game the chal-
lenger first generates the parameters and the keys for the bank and the judge;
we denote this by AllGen. The challenger then gives the adversary the keys cor-
responding to the parties he is allowed to impersonate.

3.1 Unforgeability

Unforgeability is a notion protecting the bank, meaning that no collection of
users can ever spend more coins than they withdrew, even by corrupting the
judge. Formally, we have the following experiment and definition.

Expi (\)
— (par,skg, pkg,sk7, pk.;) < AllGen(1%);
— cont < true: st + (;
— While (cont = true) do {
_ (COTLt St) — ACreate,Corrupt,BWith,With,Rcv,Spd,BDepo,Depo(St par Skj Pk[g)'
? I 9 9)
Let qw, qs and qr denote the number of successful queries to
the oracles BWith, Spd and Rcv, respectively.
— If (qw + gs < qr) return 1; }
Return 1.

Definition 1 (Unforgeability). Let IT be a transferable e-cash system with a
Jjudge. For an adversary A and A € N, we let Succ”H”fX()\) = Pr[Ewp‘I’{”{j(()\) =1].
unfor

II is said to be unforgeable if the function Succyy J(-) is negligible for any poly-
nomial-time adversary A.

3.2 Identification of Double-Spenders

This notion guarantees the bank that no collection of users, collaborating with
the judge, can spend a coin twice (double-spend) without revealing one of their
identities. Formally, we have the following experiment and definition.

Exp'7i(A)

— (par,skp, pkg,skz, pk ;) < AllGen(1%); cont + true: st « 0;
— While (cont = true) do {

_ (St) — ACreate,Corrupt,BWith,With,Rcv,Spd,BDepo,Depo,ldt(St’ par, Skj, pkB)7
— 1If a call to BDepo outputs (L, Id, ¢, '), then cont + false; }
(i*, 7¢) « ldentify(Id, ¢, sk 7);
— If (VerifyGuilt(pk;«, 7¢) = 0) or (i* = 0) return 1;
Return L.

Definition 2 (Double-Spender Identification). Let IT be a transferable e-
cash system with a judge. For any adversary A and A € N, we let Succ'ﬁf“j()\) =
Pr[Empﬁf”Af()\) = 1]. II identifies double spenders if the function Succﬁf"j(-) is
negligible for any polynomial-time adversary A.

3.3 Exculpability

This notion protects the users in that the bank, even when colluding with a
collection of malicious users and possibly the judge, cannot falsely accuse (with a
proof) honest users of having double-spent a coin. Formally, we have the following
experiment and definition.

ExpJY(\)

— (par,skp, pkg,skz, pks) < AllGen(1%);

(Id* C>1k C; i* 7_*) (;ACreate,Corrupt,UWith,Rcv,Spd,UDepo,Idt(
) b) b

If VerifyGuilt(pk;.,7*) = 1 and sk;» #.L return 1;

— Return L.

st, par,sk 7, skg);

Definition 3 (Exculpability). Let II be a transferable e-cash system with
Jjudge. For an adversary A and A € N, we let Succ?}ffi{()\) = Pr[E:cp%ffj{()\) =1].
excul

II is said to be exculpable if the function Succi;(+) is negligible for any poly-
nomial-time adversary A.

3.4 Anonymity Properties in Transferable E-cash

Regarding anonymity, Canard and Gouget [6] distinguish between five different
notions: weak anonmity (WA), strong anonymity (SA), full anonymity (FA), and
two types of restricted perfect anonymity (PA; and PAs). They show that FA
implies SA, which implies WA, and that FA, PA; and PAs are all incomparable.
We say the anonymity for a transferable e-cash scheme is optimal when it satisfies

the latter 3 properties. We work with the formal definitions of [6] but slightly
modify the terminology!.

— Observe-then-Receive Full Anonymity (OtR-FA, previously FA): the adver-
sary, impersonating the bank, cannot link a coin he receives as “legitimate”
user to a previously (passively) observed transfer between honest users.

— Spend-then-Observe Full Anonymity (StO-FA, previously PA;): the adver-
sary, impersonating the bank, cannot link a (passively) observed coin trans-
ferred between two honest users to a coin he has already owned as a “legiti-
mate” user.

— Spend-then-Receive Full Anonymity (StR-FA, previously PAs): when the
bank is honest, the adversary cannot link two transactions involving the
same coin, i.e. to make the link between two coins he has received.

In the following, we say that a transferable e-cash scheme achieves optimal
anonymity if it satisfies at the same time OtR-FA, StO-FA and StR-FA, which
are incomparable, according to [6].

We now formally define these anonymity notions, based on the corresponding
experiments described below.

Expli RPN //be{0,1}, A= (Acn, A, Agu)

(par, sk, pky, sk, pk.;) < A!IGen(lA);
(267 iT, St) - AS}rLeate,Corrupt,UW|th,Rcv,Spd,Spd&Rcv,UDepo,Idt(par, SkB, pkj);
If skix =1 V skiz =1 V comp(ig,i7) = 0V ig € RUV if € RU,
return L;
Choose j* such that coin number j* belongs to i; and ij_, owns a
coin of equal size. Simulate Spd (i}, 7*) to A., which outputs st.;
b* ACreate,Corrupt,UWith,Rcv,Spd,Spd&Rcv,UDepo,ldt t):

= qgu (S C)a

— Return b*.

Expiri (V) /) b€ {0,1}, A= (A, Agu)

— (par,skg, pkg, sk 7, pk.s) < AIIGen(l’\);

ko ks Create,Corrupt,UWith,Rcv,Spd,Spd&Rcv,UDepo,Idt .
- (Zg,lylﬂaza‘gt) A ‘Ach (par, SkBaka)a

— If skijz =1 V skz =1 V skys =1 V comp(if,i7) = 0, return L;

— Choose j* such that coin number j* belongs to i, and ¢]_, owns a
coin of equal size; run out <— Spd&Rcev(j*, i}, 13);

b* «— ACLeate,Corrupt,UWith,Rcv,Spd,Spd&Rcv,UDepo,Idt(Out’Stc);

— If an oracle call involed the coin used in Spd&Rcv then return L;
Return b*.

Expﬁt{f‘b(}\) /] be{0,1}, A= (Ach, Ac, Agu)

— (par,skp = (skw, skp), pkg = (pkyy, pkp),sk7, pk ;) < AllGen(1%);

! In particular, the notion of “perfect” anonymity in [6] is not based on the indistin-
guishability of distributions, which may be confusing, as we only achieve a compu-
tational security.

(ig, 17, st)

. ‘Ag;;eate,Corrupt,UWith,Rcv,Spd,Spd&Rcv,BDepo,Depo,Idt(par, Skw,ka7ka);
— If (skiz =L Vsk;; =1) or (comp(if,i}) = 0), return L;
Choose j* such that coin number j* belongs to i;, and i]_, owns a
coin of equal size. Simulate Spd (i}, 7*) to A., which outputs st;
— b~ qurteate,Corrupt,UWith,Rcv,Spd,Spd&Rcv,BDepo,Depo,ldt(Stc);

— If the oracle Depo is called on input either i or i], return _L;
Return b*.

Definition 4 (Anonymity Properties). Let IT be a transferable e-cash sys-
tem with judge and let c € {otr-fa, sto-fa, str-fa}. For an adversary A and X\ € N,
we let Adv; 4(N) = Pr[EwpﬁfA()\) =1] - Pr[Ewp%?A()\) = 1]. II is said to be
Observe-then-Receive fully anonymous (resp. Spend-then-Observe fully anony-

mous, Spend-then-Receive fully anonymous) if the above function Adv}’;j"()

(resp. Advﬁ?f(-), Advﬁrf()) is megligible for any polynomial-time adversary
A.

4 Cryptographic Tools

In this section, we give the main tools we need to construct our new transferable
e-cash system with judge. For each of them, we introduce the concept, give the
underlying procedures and formally describe the main security characteristics.

4.1 The SXDH Assumption

The SXDH assumption was introduced in [5] and can be defined as follows.

Definition 5 (Symmetric external DH Assumption (SXDH)). Let G, Go
be cyclic groups of prime order, e: Gy X Go — Grp be a bilinear map. The
SXDH assumption states that the DDH assumption holds in both G1 and Go.

4.2 Groth-Sahai Proofs

Groth and Sahai proposed in [11] the first efficient non-interactive proof system
for bilinear groups which does not need the random oracle model. In this paper,
we will use the SXDH based Groth-Sahai (GS for short) proof system. Those
proofs perfectly fit in our model, as they provide the required flexibility through
their randomization property, and through their NIWI aspect they let us preserve
the anonymity of the different players.

We use SXDH-based Groth-Sahai commitments in a pairing-friendly setting
(p,G1,G2,Gr,e,91,g2), in order to commit elements while remaining able to
prove relations satisfied by the associated plaintexts. The commitment key is:

u v
u:(1)6@3“ and v:< 1>€G2QX2.
u V2

Depending if we want to be in the perfectly hiding or the perfectly binding
(mostly for simulations in security proof) setting, the initialization of the pa-
rameters will vary between: u; = (gi,u) with v = g7 and uz = u;* with
A, & Zy, (and so u is a Diffie-Hellman tuple in G;). Whereas, in the perfectly
hiding setting, uy = u1” ® (1,91)" % ug = (g1,9)) and ug = (g, g}*). The
same goes in G4 for v.

Group Element Commitment. To commit to X € Gp, with random values
51,52 € Zp, we set C(X) = (1, X) O uj' ©uy® = (uy’y - uy’y, X - ufly - ud).

— Perfectly binding setting: C(X) = (¢¢, X - u®), for a = s1 + ps2. A simu-
lator that knows A\ can extract X as this is an ElGamal encryption of X
under (g1, g7). The key) is called the extraction key for such an extractable
commatment.

— Perfectly hiding setting: C(X) = (g%, X/g% - u?), for a = s1 + pusa, b = s1,
two random independent values: this is an encryption of X/g%, for a random
b, so it blinds X.

The same can be done in G; if we consider v and gs.

Proofs. Under the SXDH assumption, the two initializations of the commitment
key are indistinguishable. The Groth-Sahai methodology gives us a way to build
a pair (7,0) € G%“ X G?XZ proving the satisfiability of a set of equations over a
bilinear group where such commitments are involved to hide the plaintexts. Being
able to produce a valid pair implies knowing plaintexts verifying the appropriate
relation.

Randomization. The commitments can easily be randomized given a commit-
ment ¢ in G?: one can choose two random values s/, s, and compute a valid
’ ’ ’ ’
. . ; El S5 81 S5 .
randomization ¢’ = (c1 - up'y - ug’;, 2 - up'y - Uy’), Which leads to some changes
on (m,0) depending on the original equation.
The proofs (m,8) can easily be randomized on its own.

Optimization. Depending on the original equations the proofs can require less
elements. For example, the main operation in the protocol will be to prove that
two committed nonces are the same. Due to some limitation (coming from the
extractability requirement) on the nonces, they have to be committed in different
groups. The resulting equation is called a quadratic equation, which means that
(m,0) € G2 x G3.

4.3 Commuting Signatures

Commuting signatures and verifiable encryption [9] is a primitive combining a
signature scheme (the automorphic signature from [1] whose messages are group
elements) with Groth-Sahai (GS) proofs. This allows to commit to a message,
a verification key, or a corresponding signature (or arbitrary combinations of

10

them), and prove that the committed values are valid (i.e. the signature is valid
on the message under the key), via the GS methodology.

Commuting signatures provide several additional functionalities, of which we
use the following two:

SigCom: This allows a signer, who is given a commitment C to a message, to
make a commitment to a signature (under his secret key) on that message
(without knowing it though) and a proof that the commitment contains a
valid signature on the value committed in C.

AdPrCyx: Given a commitment to a message, a commitment to a signature and
a proof of validity w.r.t. to a verification key, this algorithm allows anyone to
commit to that key and adapt the proof; more precisely, AdPrCx outputs a
proof asserting that a commitment contains a valid signature on a committed
message under a committed verification key.

Security states that the output of SigCom is the same as if the signer had known
the message, signed it, made commitments to the message and the signature and
given a GS proof of validity w.r.t. his signature verification key. Analogously, the
output of AdPrCi is the same as a proof constructed for the known committed
values.

We use commuting signatures to enable users to produce committed signa-
tures on values that are only available as commitments and make a proof of
validity w.r.t. their verification key, which is also given as a commitment.

5 A New Tranferable E-cash System with Judge

In this section, we describe our new transferable e-cash system with judge, based
on the cryptographic building blocks described in Section 4. We describe a solu-
tion in which the withdrawer is anonymous w.r.t. the bank, which is not classical.
This is motivated by the fact that our withdrawal is very similar to the spending
protocol and that it is easy to make the withdrawer non-anonymous if one wants
to. A customer may want to anonymously buy tickets (using some anonymous
payment systems) from the transport provider that she will next transfer to
other customers.

5.1 Overview of the Solution

A coin is represented by a unique chain of nonces N = ngl||ny||nza|| - - -, where
each n; is randomly chosen by each owner of this coin. Indeed, ng is chosen by
the bank, n; by the withdrawer, ny by the one who receives this coin from the
withdrawer, etc. A double-spending is detected when there are two coins N and
N’ such that ng = nf. Next, the minimum value ¢ such that n; # n} corresponds
to the first protocol of spending of this coin such that a double spending has
been done. The identity of the double-spender can finally be retrieved by the
judge, using an extractable commitment of the user public key.

11

During a spending protocol between U; and U;11, the spender U; signs (i)
the nonce she has chosen during the reception of the coin (previous spending
protocol, or withdrawal procedure), (ii) the nonce she is given by the actual
receiver U; 11, and (iii) the signature public key of the latter. This element is
signed to permit U; 1 to further spend this coin. In fact, U;41 is the only one
that can use the secret key which is related to the signed public key, and she is
thus the only one that will be able to spend this coin. The commuting signature
is used in this protocol since it provides the possibility to sign messages that are
committed, using a key pair which is also committed and such that everyone can
check that the result is correct.

During the spending protocol of a coin, its entire history (i.e. previous spend-
ing protocols of it) is transmitted. This is necessary to provide unforgeability,
identification of double-spending and non-frameability, without requiring data
to be stored by the user and provided later on-demand of a judge to prove
his honesty (as was the case in the weaker model in [10]). Since we want the
scheme to achieve perfect anonymity, the history of a coin is re-randomized by
using the randomization techniques for extractable commitments and Groth-
Sahai proofs [2].

5.2 Key-Generation Algorithms

During the generation phase, the judge J generates two different extraction
keys (see extractable commitments in Section 4) for the identification of double
spenders. Similarly, the double-spending detector D generates a pair of commit-
ment/extraction key for the GS methodology.

We denote a commitment under [J’s key by either ¢ (first key pair) or ¢
(second key pair) and a commitment under D’s key by d. Using their secret
extraction keys, the judge and the detector can open commitments under their
respective keys using Open ; and Openyp.

The judge also generates a key pair for a commuting signature scheme; in
the following, a signature on m from J is denoted Sign ;(m). The bank B and
each user U generate also generate key pairs (bsk, bpk) (resp. (usk,upk)) for
the commuting signature scheme (see Section 4). Moreover, each user U obtains
from the judge J a signature on her public key as membership certificate: cert =
Sign 7 (upk). In the following, we differentiate the users by using numbers U, Us,
etc.

5.3 Withdrawal Protocol

The withdrawal protocol involves a user U; and the bank B. In a nutshell, the
bank B generates a random nonce ny and the user a random nonce nq, which
together will be the beginning of the serial number of the coin. The bank then
signs these nonces and also the user’s public key upk;, which will bind the user’s
identity to the coin and enable tracing in case of double spending.

However, to guarantee anonymity, rather than sending these values in the
clear, the user sends commitments to them. She also adds a commitment to her

12

certificate and a proof of validity, which convinces the bank that she is actually
registered. This can be done using the fact that the certificate is an automorphic
signature (for which we can use GS proofs to prove that a committed value is a
valid signature on another committed value, in this case upk;).

The bank now has to construct a committed signature on the values ng, ny
and upk,, which are only given in the form of commitments. This is where we
take advantage of the functionality SigCom of the commuting-signature scheme
introduced in Section 4.3: given commitments, a signer can produce a commit-
ment to a signature on the values contained in them, together with a proof of
validity of the signature.

All these commitments will be done w.r.t. the judge’s commitment key. To
enable the double-spending detector D to detect a double-spending (however
without breaking the user’s anonymity), we do the following: in addition to
committing to the nonces w.r.t. the judge’s key, the user and the bank make
another commitment d,, to n; w.r.t. D’s key. In order to show that this was
done correctly, we require a proof that two commitments w.r.t. different keys
contain the same value. This can be done by using two instances of Groth-Sahai
on top of each other, as was shown in [10].

We formalize the above in the following protocol:

1. [U1] picks at random a nonce ng and sends B two extractable commitments

(for J and D) to ny denoted respectively by c¢,, and d,,, and a proof m,,
that the two committed values are equal.
Moreover, U; sends commitments ¢, , ¢,, and c., to its public key upk; and
its certificate cert;, respectively, together with a proof m,, that the value in
Ce, is a valid signature on the value in ¢,,, i.e. cert; = Sign ;(upk;) and a
proof 7,, that the committed values on ¢,, and ¢,, are the same.

2. [B] now also generates a random nonce ny and makes two commitments (for

J and D) to ng denoted by ¢,, and d,,, and a proof m,, that the two
committed values are equal.
B produces a committed signature c;, on the values ng,n; and upk; by
running SigCom on ¢y, ¢, and ¢, ; this also outputs a proof 7, of validity
of ¢, W..t. ¢y, €,y and ¢, and the bank’s verification key (which is available
in the clear). Finally, the bank sends to U the coin defined as

COInl = (cno) C’I’Ll) dno) dnl) 7Tn0 9 7Tn1) cul) Cul) Ccl b 7Tu1 b 7Tu1) Csl) 7TSI) .

In the sequel, this coin will be randomized before being spent. The result of ran-
domizing coin; is denoted coingl) and consists in randomizing all its components.

D = (D) D g g 20))) (1))))y,

Th ; (1)

us, coing no s Cny s ng , Any » Tng s Tng s Cuy s Cuy y Cer s Tug s Tuy' Csy oy sy
The randomization of the commitments and proofs is done as explained in Sec-
tion 4.2 and [2].

5.4 Spending Protocol

This is a protocol between a user U; holding a coin coiny = (Cny, Cnyy Ang» Any y Trg s
Ty Cuys Cug s Ceys Tugs Tug » Csqy Tsy) and a user Us playing the role of the receiver.

13

The protocol is very similar to the withdrawal protocol, except for two points.
First, U4; has to randomize the coin, which prevents a later linking of the coin.
Note that, due to the contained proofs, validity of a coin is publicly verifiable.

Second, while the bank’s verification key is public, U;’s key must remain
hidden. Thus, after /; produces a commitment to a signature on the values nq,
nsy (the nonce chosen by Us), and Us’s public key upk,, and a proof that verifies
w.r.t. her public key upk,, U; does the following: using the functionality AdPrCx
(see Section 4.3), she converts the proof into one stating that the committed
signature is valid under the value committed in c&ll) (i.e. the randomization of
the commitment to upk,).

1. [Us] picks at random a nonce ny and computes two commitments c¢,, and

dyp, to it (for J and D) and a proof 7, that the two committed values are
equal.
Moreover, Us makes commitments c,,, ¢,, and c., to her public key upk,
and her certificate certa, together with the proof m,, that c,, and c., are
consistent and a proof 7,, that the committed values in ¢,, and ¢&,, are
equals. She sends (¢n,, dnys Tnys Cuss Cuss Cens Tun s Tuy) 10 Ui

2. [U;] randomizes coiny to coin 11 as described above and produces a committed

signature on the values committed in cﬁ,ﬂ), Cn, and ¢, using SigCom: this gen-
erates a commitment c,, to a signature on the values ny, ny and upk,, as well
as a proof 7 of validity of ¢, on ¢y, Cp,, cu, W.1.t. upk. Using AdPrCy, Uy

. - . .
converts 7, to a proof asserting validity w.r.t. the key committed in CELZ), and

L . (1) - .
sends the coin coing = (€oiny ’, Cny, Anyy Tnas Cuss Cuss Cens Tun s Tugs Csys Msy) 1O

Us.
Before Us spends the coin, she randomizes it to obtain coin(Ql) = (coin?)7 0532), d%),

1 1) ~(1 1 1) ~(1 1 1
7r7(12)7 051«2)7 051«2)7 céz)v 7T1(42), Wl(tz)v 622)7 7TL(92))'

5.5 Deposit and Identify Procedures

In order to detect a double-spending given a coin, the detector D opens all the

commitments dgfo) , dﬁfﬁ, d%£2_1)7 -+, d_ () contained in it, using the extraction key.
£
She thus obtains the serial number n = ngl|ny|| - - - ||ne of this coin, which allows

her to check whether the coin was double-spent.

To do so, D checks whether ng already exists in her database. If this is not
the case, then the Deposit is validated and the list £ is updated by adding
n = ng|ln1| - - - [[ne. Otherwise, if a serial number beginning with ng already
exists in her database, then this coin is not fresh (the depositary is cheating) and
D outputs L. She then compares the two serial numbers n = ngl|ny||nz|| - - - ||ne
and 7 = ng||71||7e|| - - - ||7e and stops at the first ig such that n;, # 7,,. She
finally asks for the execution of the Identify procedure by the Judge on input the
two related spendings and 7.

To identify the double spender, the judge uses either the commitment Cusy—1
or the commitment ¢,, ,, using the appropriate extraction key, which gives her,
in both cases, the value upk; _; and thus the identity of the fraudster.

14

5.6 Security Considerations

We now sketch the proofs that our scheme is secure. We have to show that it
fulfills all the security requirements given in Section 3.

Theorem 1. Our transferable e-cash system with a judge is secure under the fol-
lowing assumptions: unforgeability of the judge signature scheme, the unforgeabil-
ity of the commuting signature scheme and the security (soundness and witness
indistinguishability) of Groth-Sahai proofs.

Proof (sketch). We focus on each desired security properties.

— Unforgeability. We assume that an adversary is able to break the unforge-
ability of our transferable e-cash scheme and we use it, as a black box, to
design a machine which breaks the unforgeability of the commuting signa-
ture.

First of all, we use the public key given by our challenger as the bank’s
public key and give it to our adversary. Other parameters are generated as
described in our e-cash scheme, without any modifications.
We can answer any request to oracles by the adversary, either by using the
appropriate key, or by making use of the commuting signing oracle during a
Witdraw protocol (oracles BWith and Withdraw).
After each successful call to a Recv oracle, our machine uses the extraction
key of the judge to open cs,, that is the commitment on the bank’s commut-
ing signature on the first spending (that is the withdrawal) to retrieve the
embedded signature. There are then two cases:

1. the extracted signature comes from the signing oracle. Then the experi-

ment is continued.
2. the extracted signature does not come from the signing oracle. This is
then a forge and we have broken the unforgeability of the signing oracle.

As the adversary wins the game when qw + ¢s < gr, where g (resp. gs,
qr) denotes the number of successful queries to the oracle BWith (resp. Spd,
Rev), we necessarily fall once into the second case above. As there are, by
assumption, no detection of a double spending and as we have made in
total qw queries to the signing oracle, the qr extractions necessarily give
gs correlated signatures (when the spending corresponds to the spending
of an already spent coin) and g + 1 different signatures. This gives our
machine the same advantage as the adversary to break the unforgeability of
the commuting signature, which concludes the proof.

— Identification of Double-Spender. We assume that an adversary is able
to break the identification of double-spender property of our transferable e-
cash scheme and we use it, as a black box, to design a machine which breaks
the unforgeability of the commuting signature.

First of all, we use the public key given by our challenger as the judge’s
public key and give it to our adversary. Other parameters are generated as
described in our e-cash scheme, without any modifications.

15

We can answer any request to oracles by the adversary, either by using the
appropriate key, or by making use of the commuting signing oracle for the
certification of a new user in the system (oracle Create).

At any time of the experiment, the adversary outputs a new state st such
that a call to the BDepot oracle outputs (Lo, Id, 7,7*) (a double-spending
is detected). If the adversary is successful, then the Identify oracle outputs
(i*,7¢) such that either VerifyGuilt(pk;.,7¢) = 0, or ¢* = 0. Our machine
next uses the extraction key of the judge to obtain the certificates into the
two spendings. As the adversary wins with non negligible probability, the re-
lated certificate has necessarily not been requested to the signing commuting
and is thus a forge, which concludes the proof.

Exculpability. This result is quite similar to the unforgeability one, except
that we now focus on the signature scheme of each honest user instead of
the one of the bank. In fact, the adversary succeeds in the exculpability
experiment if it succeeds in producing a commuting signature on behalf of
an honest user. As an honest payer signs both the previously chosen nonce
and the new one, this is not feasible to force her to sign twice the nonce she
has previously chosen.

The main difference is that we do not know a priori which user will be
falsely accused of being a double-spender. For this, we use some kind of one-
more problem [3] where the challenger gives us ¢ different signature public
keys and access to the ¢ corresponding signing oracles. We are also able to
“corrupt” at most £ — 1 secret keys and our aim is to finally outputs ¢ forges,
one for each signature public key. Using a reduction similar to the one for
the unforgeability property, and using the above remark, we use the signing
oracle of the right user each time the adversary ask this honest user to spend
a coin and we use our corruption oracle each time the adversary corrupt a
user. At the end, we extract the forged signature from the output of the
adversary, and we use our corruption oracle to obtain the last secret keys,
which concludes our proof.

Anonymity Properties. Regarding Section 3.4, we have to consider the
FA, PA; and the PAs properties. In fact, the related security proofs are
very close and we only detail the F'A one.

In a nutshell, Groth-Sahai proofs are witness indistinguishable and are al-
ways re-randomized (see [2]). As a consequence, they do not give any informa-
tion about user’s identity. Moreover, in our scheme, extractable commitments
are computationally hiding (and perfectly binding) but, using standard tech-
niques (see for example [2,10]), we make them perfectly hiding during our
reduction. As a consequence, it follows that they do not reveal any more
information about user’s identity. Note that we can easily simulates the en-
vironment of the adversary. The only problem we may have is to correctly
simulate the identification of a double-spending produced by the adversary.
That’s why we introduce ¢ and ¢ in our scheme (see Section 5.2).

More precisely, we start by running the experiment fay for an adversary
A and the simulator B. We define a first game Gy which is the real game,
and we denote € the advantage of the adversary. We then define a game

16

(1, in which the Groth Sahai commitments c,d are replaced by perfectly
hiding ones. We can then use random values in the commitments and adapt
the proofs (thanks to the NIWI property of Groth Sahai methodology) so
that the adversary can’t distinguish this game from the previous one. The
simulator still uses real values in the challenge commitments.

We then define a last game Gg, where we use random values for the challenge
users. We still can simulate the oracles as follows.

e To answer a CSpd, USpd, Spd & Rcv query on one of the two anonymity
challenges, B simply puts a random value in the appropriate commitment
¢y, and adapts the proof, using standard techniques on Groth Sahai
proofs.

e To answer any queries on any other honest users, the simulators runs
the standard version of the protocol.

e To answer a ldent query, the simulator extracts the value from ¢,, and
returns it (basically an honest user shouldn’t do any double spending).

In this final game, all the values supposed to be linked to the challenge users
are now random values, therefore e = 0, but, as Groth Sahai proofs are
NIWI, we have €3 = €.
We can run exactly the same experiment for the game fa;. The correspond-
ing game G is exactly the same as in fag, so we have € = 0 too.
This concludes the proofs of the F'A property. The PA; property can be
proven similarly with very slight modifications. Regarding the P As property,
the fact that the adversary has already possessed the coin it is receiving does
not change anything in our above games. The answers to the oracles are done
similarly, since we use the re-randomization technique for both commitments
and Groth Sahai proofs.

O

References

1.

Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. Structure-preserving signatures and commitments to group elements. In
CRYPTO’10, volume 6223 of LNCS, pages 209-236. Springer, 2010.

Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyan-
skaya, and Hovav Shacham. Randomizable proofs and delegatable anonymous
credentials. In CRYPTO’09, volume 5677 of LNCS, pages 108-125, 2009.

Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko.
The one-more-rsa-inversion problems and the security of chaum’s blind signature
scheme. J. Cryptology, 16(3):185-215, 2003.

Marina Blanton. Improved conditional e-payments. In ACNS’08, volume 5037 of
LNCS, pages 188206, 2008.

Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
CRYPTO’04, volume 3152 of LNCS, pages 41-55. Springer, 2004.

Sébastien Canard and Aline Gouget. Anonymity in transferable e-cash. In
ACNS’08, volume 5037 of LNCS, pages 207—223. Springer, 2008.

Sébastien Canard, Aline Gouget, and Jacques Traoré. Improvement of efficiency
in (unconditional) anonymous transferable e-cash. In Financial Cryptography’08,
volume 5143 of LNCS, pages 202-214. Springer, 2008.

17

10.

11.

12.

13.

14.

15.
16.

David Chaum and Torben P. Pedersen. Transferred cash grows in size. In FURO-
CRYPT"’92, volume 658 of LNCS, pages 390-407. Springer, 1992.

Georg Fuchsbauer. Commuting signatures and verifiable encryption. In FURO-
CRYPT’11, volume to appear of LNCS, pages ?—? Springer, 2011.

Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Transferable anony-
mous constant-size fair e-cash. In CANS’09, volume 5888 of LNCS, pages 226—247.
Springer, 2009.

Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In EUROCRYPT’08, volume 4965 of LNCS, pages 415-432. Springer,
2008.

Tatsuaki Okamoto and Kazuo Ohta. Disposable zero-knowledge authentications
and their applications to untraceable electronic cash. In CRYPTO’89, volume 435
of LNCS, pages 481-496. Springer, 1989.

Tatsuaki Okamoto and Kazuo Ohta. Universal electronic cash. In CRYPTO’91,
volume 576 of LNCS, pages 324-337. Springer, 1991.

Alfredo De Santis and Moti Yung. Crptograpic applications of the non-interactive
metaproof and many-prover systems. In CRYPTO’90, volume 537 of LNCS, pages
366-377. Springer, 1990.

Hans van Antwerpen. FElectronic Cash. PhD thesis, CWI, 1990.

Sebastiaan H. von Solms and David Naccache. On blind signatures and perfect
crimes. Computers & Security, 11(6):581-583, 1992.

18

