
This is the Full Version of the Extended Abstract that appears
in the Proceedings of the 16th International Conference on Practice and Theory in Public-Key Cryptography PKC 2013
(26 February – 1 March 2013, Nara, Japan)
K. Kurosawa and G. Hanaoka Eds., Springer-Verlag, LNCS 7778, pages 272–291.

Efficient UC-Secure Authenticated Key-Exchange for Algebraic Languages

Fabrice Ben Hamouda1, Olivier Blazy2, Céline Chevalier3, David Pointcheval1, and Damien Vergnaud1

1 ENS, Paris, France †
2 Ruhr-Universität Bochum, Germany

3 Université Panthéon-Assas, Paris, France

Abstract Authenticated Key Exchange (AKE) protocols enable two parties to establish a shared, cryptographically
strong key over an insecure network using various authentication means, such as cryptographic keys, short (i.e., low-
entropy) secret keys or credentials. In this paper, we provide a general framework, that encompasses several previous
AKE primitives such as (Verifier-based) Password-Authenticated Key Exchange or Secret Handshakes, we call LAKE
for Language-Authenticated Key Exchange.
We first model this general primitive in the Universal Composability (UC) setting. Thereafter, we show that the
Gennaro-Lindell approach can efficiently address this goal. But we need smooth projective hash functions on new
languages, whose efficient implementations are of independent interest. We indeed provide such hash functions for
languages defined by combinations of linear pairing product equations.
Combined with an efficient commitment scheme, that is derived from the highly-efficient UC-secure Lindell’s commit-
ment, we obtain a very practical realization of Secret Handshakes, but also Credential-Authenticated Key Exchange
protocols. All the protocols are UC-secure, in the standard model with a common reference string, under the classical
Decisional Linear assumption.

1 Introduction

The main goal of an Authenticated Key Exchange (AKE) protocol is to enable two parties to establish a shared
cryptographically strong key over an insecure network under the complete control of an adversary. AKE is one
of the most widely used and fundamental cryptographic primitives. In order for AKE to be possible, the parties
must have authentication means, e.g. (public or secret) cryptographic keys, short (i.e., low-entropy) secret keys
or credentials that satisfy a (public or secret) policy.

Motivation. PAKE, for Password-Authenticated Key Exchange, was formalized by Bellovin and Merritt [BM92]
and followed by many proposals based on different cryptographic assumptions (see [ACP09,CCGS10] and refer-
ences therein). It allows users to generate a strong cryptographic key based on a shared “human-memorable” (i.e.
low-entropy) password without requiring a public-key infrastructure. In this setting, an adversary controlling
all communication in the network should not be able to mount an off-line dictionary attack.

The concept of Secret Handshakes has been introduced in 2003 by Balfanz, Durfee, Shankar, Smetters,
Staddon and Wong [BDS+03] (see also [JL09, AKB07]). It allows two members of the same group to identify
each other secretly, in the sense that each party reveals his affiliation to the other only if they are members of
the same group. At the end of the protocol, the parties can set up an ephemeral session key for securing further
communication between them and an outsider is unable to determine if the handshake succeeded. In case of
failure, the players do not learn any information about the other party’s affiliation.

More recently, Credential-Authenticated Key Exchange (CAKE) was presented by Camenisch, Casati, Groß
and Shoup [CCGS10]. In this primitive, a common key is established if and only if a specific relation is satisfied
between credentials hold by the two players. This primitive includes variants of PAKE and Secret Handshakes,
and namely Verifier-based PAKE, where the client owns a password pw and the server knows a one-way trans-
formation v of the password only. It prevents massive password recovering in case of server corruption. The two
players eventually agree on a common high entropy secret if and only if pw and v match together, and off-line
dictionary attacks are prevented for third-party players.

Our Results. We propose a new primitive that encompasses most of the previous notions of authenticated
key exchange. It is closely related to CAKE and we call it LAKE, for Language-Authenticated Key-Exchange,
since parties establish a common key if and only if they hold credentials that belong to specific (and possibly
independent) languages. The definition of the primitive is more practice-oriented than the definition of CAKE
from [CCGS10] but the two notions are very similar. In particular, the new primitive enables privacy-preserving

† ENS, CNRS & INRIA – UMR 8548

c© IACR 2013.

2

authentication and key exchange protocols by allowing two members of the same group to secretly and privately
authenticate to each other without revealing this group beforehand.

In order to define the security of this primitive, we use the UC framework and an appropriate definition for
languages that permits to dissociate the public part of the policy, the private common information the users
want to check and the (possibly independent) secret values each user owns that assess the membership to the
languages. We provide an ideal functionality for LAKE and give efficient realizations of the new primitive (for
a large family of languages) secure under classical mild assumptions, in the standard model (with a common
reference string – CRS), with static corruptions.

We significantly improve the efficiency of several CAKE protocols [CCGS10] for specific languages and we
enlarge the set of languages for which we can construct practical schemes. Notably, we obtain a very practical
realization of Secret Handshakes and a Verifier-based Password-Authenticated Key Exchange.

Our Techniques. A general framework to design PAKE in the CRS model was proposed by Gennaro and
Lindell [GL03] in 2003. This approach was applied to the UC framework by Canetti, Halevi, Katz, Lindell,
and MacKenzie [CHK+05], and improved by Abdalla, Chevalier and Pointcheval [ACP09]. It makes use of the
smooth projective hash functions (SPHF), introduced by Cramer and Shoup [CS02]. Such a hashing family is a
family of hash functions that can be evaluated in two ways: using the (secret) hashing key, one can compute
the function on every point in its domain, whereas using the (public) projection key one can only compute the
function on a special subset of its domain. Our first contribution is the description of smooth projective hash
functions for new interesting languages: Abdalla, Chevalier and Pointcheval [ACP09] explained how to make
disjunctions and conjunctions of languages, we study here languages defined by linear pairing product equations
on committed values.

In 2011, Lindell [Lin11] proposed a highly-efficient commitment scheme, with a non-interactive opening
algorithm, in the UC framework. We will not use it in black-box, but instead we will patch it to make the initial
Gennaro and Lindell’s approach to work, without zero-knowledge proofs [CHK+05], using the equivocability of
the commitment.

Language Definition. In [ACP09], Abdalla et al. already formalized languages to be considered for SPHF.
But, in the following, we will use a more simple formalism, which is nevertheless more general: we consider
any efficiently computable binary relation R : {0, 1}∗ × P × S → {0, 1}, where the additional parameters
pub ∈ {0, 1}∗ and priv ∈ P define a language LR(pub, priv) ⊆ S of the words W such that R(pub, priv,W) = 1:

– pub are public parameters;
– priv are private parameters the two players have in mind, and they should think to the same values: they

will be committed to, but never revealed;
– W is the word the sender claims to know in the language: it will be committed to, but never revealed.

Our LAKE primitive, specific to two relations Ra and Rb, will allow two users, Alice and Bob, owning a word
Wa ∈ LRa(pub, priva) and Wb ∈ LRb(pub, privb) respectively, to agree on a session key under some specific
conditions: they first both agree on the public parameter pub, Bob will think about priv′a for his expected value
of priva, Alice will do the same with priv′b for privb; eventually, if priv′a = priva and priv′b = privb, and if they both
know words in the languages, then the key agreement will succeed. In case of failure, no information should leak
about the reason of failure, except the inputs did not satisfy the relations Ra or Rb, or the languages were not
consistent.

We stress that each LAKE protocol will be specific to a pair of relations (Ra,Rb) describing the way Alice
and Bob will authenticate to each other. This pair of relations (Ra,Rb) specifies the sets Pa, Pb and Sa, Sb (to
which the private parameters and the words should respectively belong). Therefore, the formats of priva, privb
and Wa and Wb are known in advance, but not their values. When Ra and Rb are clearly defined from the
context (e.g., PAKE), we omit them in the notations. For example, these relations can formalize:

– Password authentication: The language is defined by R(pub, priv,W) = 1 ⇔ W = priv, and thus pub = ∅.
The classical setting of PAKE requires the players A and B to use the same password W , and thus we
should have priva = priv′b = privb = priv′a = Wa = Wb;

– Signature authentication: R(pub, priv,W) = 1⇔ Verif(pub1, pub2,W) = 1, where pub = (pub1 = vk, pub2 =
M) and priv = ∅. The word W is thus a signature of M valid under vk, both specified in pub;

3

– Credential authentication: we can consider any mix for vk and M in pub or priv, and even in W , for
which the relation R verifies the validity of the signature. When M and vk are in priv or W , we achieve
affiliation-hiding property.

In the two last cases, the parameter pub can thus consist of a message on which the user is expected to know a
signature valid under vk: either the user knows the signing key and can generate the signature on the fly to run
the protocol, or the user has been given signatures on some messages (credentials). As a consequence, we just
assume that, after having publicly agreed on a common pub, the two players have valid words in the appropriate
languages. The way they have obtained these words does not matter.

Following our generic construction, private elements will be committed using encryption schemes, derived
from Cramer-Shoup’s scheme, and will thus have to be first encoded as n-tuples of elements in a group G. In the
case of PAKE, authentication will check that a player knows an appropriate password. The relation is a simple
equality test, and accepts for one word only. A random commitment (and thus of a random group element) will
succeed with negligible probability. For signature-based authentication, the verification key can be kept secret,
but the signature should be unforgeable and thus a random word W should quite unlikely satisfy the relation.
We will often make this assumption on useful relations R: for any pub, {(priv,W) ∈ P×S,R(pub, priv,W) = 1}
is sparse (negligible) in P × S, and a fortiori in the set Gn in which elements are first embedded.

2 Definitions

In this section, we first briefly recall the notations and the security notions of the basic primitives we will use
in the rest of the paper, and namely public key encryption and signature. More formal definitions, together
with the classical computational assumptions (CDH, DDH, and DLin) are provided in the Appendix A.1: A
public-key encryption scheme is defined by four algorithms: param← Setup(1k), (ek, dk)← KeyGen(param), c←
Encrypt(ek,m; r), and m← Decrypt(dk, c). We will need the classical notion of IND-CCA security. A signature
scheme is defined by four algorithms: param ← Setup(1k), (vk, sk) ← KeyGen(param), σ ← Sign(sk,m; s), and
Verif(vk,m, σ). We will need the classical notion of EUF-CMA security. In both cases, the global parameters
param will be ignored, included in the CRS. We will furthermore make use of collision-resistant hash function
families.

2.1 Universal Composability

Our main goal will be to provide protocols with security in the universal composability framework. The interested
reader is referred to [Can01,CHK+05] for details. More precisely, we will work in the UC framework with joint
state proposed by Canetti and Rabin [CR03] (with the CRS as the joint state). Since players are not individually
authenticated, but just afterward if the credentials are mutually consistent with the two players’ languages, the
adversary will be allowed to interact on behalf of any player from the beginning of the protocol, either with the
credentials provided by the environment (static corruption) or without (impersonation attempt). As with the
Split Functionality [BCL+05], according to whom sends the first flow for a player, either the player itself or the
adversary, we know whether this is an honest player or a dishonest player (corrupted or impersonation attempt,
but anyway controlled by the adversary). Then, our goal will be to prove that the best an adversary can do is
to try to play against one of the other players, as an honest player would do, with a credential it guessed or
obtained in any possible way. This is exactly the so-called one-line dictionary attack when one considers PAKE
protocols. In the adaptive corruption setting, the adversary could get complete access to the private credentials
and the internal memory of an honest player, and then get control of it, at any time. But we will restrict to
the static corruption setting in this paper. It is enough to deal with most of the concrete requirements: related
credentials, arbitrary compositions, and forward-secrecy. To achieve our goal, for a UC-secure LAKE, we will
use some other primitives which are secure in the classical setting only.

2.2 Commitment

Commitments allow a user to commit to a value, without revealing it, but without the possibility to later change
his mind. It is composed of three algorithms: Setup(1k) generates the system parameters, according to a security
parameter k; Commit(`,m; r) produces a commitment c on the input message m ∈ M using the random coins

4

r
$← R, under the label `, and the opening information d; while Decommit(`, c,m, d) opens the commitment c

with the message m and the opening information d that proves the correct opening under the label `.
Such a commitment scheme should be both hiding, which says that the commit phase does not leak any

information about m, and binding, which says that the decommit phase should not be able to open to two
different messages. Additional features will be required in the following, such as non-malleability, extractability,
and equivocability. We also included a label `, which can be empty or an additional public information that has
to be the same in both the commit and the decommit phases. A labeled commitment that is both non-malleable
and extractable can be instantiated by an IND-CCA labeled encryption scheme (see the Appendix A.1). We
will use the Linear Cramer-Shoup encryption scheme [Sha07,CKP07]. We will then patch it, using a technique
inspired from [Lin11], to make it additionally equivocable (see Section 3). It will have an interactive commit
phase, in two rounds: Commit(`,m; r) and a challenge ε from the receiver, which will define an implicit full
commitment to be open latter.

2.3 Smooth Projective Hash Functions

Smooth projective hash function (SPHF) systems have been defined by Cramer and Shoup [CS02] in order to
build a chosen-ciphertext secure encryption scheme. They have thereafter been extended [GL03,ACP09,BPV12]
and applied to several other primitives. Such a system is defined on a language L, with five algorithms:

– Setup(1k) generates the system parameters, according to a security parameter k;
– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk, L,W) derives the projection key hp, possibly depending on a word W ;
– Hash(hk, L,W) outputs the hash value from the hashing key;
– ProjHash(hp, L,W,w) outputs the hash value from the projection key and the witness w that W ∈ L.

The correctness of the scheme assures that if W is in L with w as a witness, then the two ways to compute the
hash values give the same result: Hash(hk, L,W) = ProjHash(hp, L,W,w). In our setting, these hash values will
belong to a group G. The security is defined through two different notions: the smoothness property guarantees
that if W 6∈ L, the hash value is statistically indistinguishable from a random element, even knowing hp; the
pseudo-randomness property guarantees that even for a word W ∈ L, but without the knowledge of a witness
w, the hash value is computationally indistinguishable from a random element, even knowing hp.

3 Double Linear Cramer-Shoup Encryption (DLCS)

As explained earlier, any IND-CCA labeled encryption scheme can be used as a non-malleable and extractable
labeled commitment scheme: one could use the Cramer-Shoup encryption scheme (see the Appendix A.4), but
we will focus on the DLin-based primitives, and thus the Linear Cramer-Shoup scheme (see the Appendix A.3),
we call LCS. Committed/encrypted elements will either directly be group elements, or bit-strings on which we
apply a reversible mapping G from {0, 1}n to G. In order to add the equivocability, one can use a technique
inspired from [Lin11]. See the Appendix B for more details, but we briefly present the commitment scheme we
will use in the rest of this paper in conjunction with SPHF.

Linear Cramer-Shoup Commitment Scheme. The parameters, in the CRS, are a group G of prime order
p, with three independent generators (g1, g2, g3)

$← G3, a collision-resistant hash function HK , and possibly an
additional reversible mapping G from {0, 1}n to G to commit bit-strings. From 9 scalars (x1, x2, x3, y1, y2, y3,

z1, z2, z3)
$← Z9

p, one also sets, for i = 1, 2, ci = gxii g
x3
3 , di = gyii g

y3
3 , and hi = gzii g

z3
3 . The public parameters

consist of the encryption key ek = (G, g1, g2, g3, c1, c2, d1, d2, h1, h2, HK), while the trapdoor for extraction is
dk = (x1, x2, x3, y1, y2, y3, z1, z2, z3). One can define the encryption process:

LCS(`, ek,M ; r, s) def= (u = (gr1, g
s
2, g

r+s
3), e = M · hr1hs2, v = (c1d

ξ
1)
r(c2d

ξ
2)
s)

where ξ = HK(`,u, e). When ξ is specified from outside, one additionally denotes it LCS∗(`, ek,M, ξ; r, s). The
commitment to a message M ∈ G, or M = G(m) for m ∈ {0, 1}n, encrypts M under ek: LCSCom(`,M ; r, s) def=
LCS(`, ek,M ; r, s). The decommit process consists of M and (r, s) to check the correctness of the encryption. It
is possible to do implicit verification, without any decommit information, but just an SPHF on the language
of the ciphertexts of M that is privately shared by the two players. Since the underlying encryption scheme is
IND-CCA, this commitment scheme is non-malleable and extractable.

5

Commit(`,M ; r, s, a, b, t) : for (r, s, a, b, t)
$← Z5

p

(C, C′)← DLCSCom(`,M, 1G; r, s, a, b)
χ = HK(C′), C′′ = gt1ζ

χ C, C′′−−−−−−→
ε←−−−−−− ε

$← Z∗pε
?

6= 0 mod p
z = (zr = r + εa mod p, zs = s+ εb mod p)

Decommit(`, C, C′, ε) : C′, t−−−−−−→ χ = HK(C′), C′′ ?= gt1ζ
χ

With z = (zr, zs), implicit check of C × C′ε ?= LCS∗(`, ek,M, ξ; zr, zs)

Figure 1. DLCSCom′ Commitment Scheme for SPHF

Double Linear Cramer-Shoup Commitment Schemes. To make it equivocable, we double the commit-
ment process, in two steps. The CRS additionally contains a scalar ℵ $← Zp, one also sets, ζ = gℵ1 . The trapdoor
for equivocability is ℵ. The Double Linear Cramer-Shoup encryption scheme, denoted DLCS and detailed in the
Appendix B is

DLCS(`, ek,M,N ; r, s, a, b) def= (C←LCS(`, ek,M ; r, s), C′←LCS∗(`, ek, N, ξ; a, b))

where ξ = HK(`,u, e) is computed during the generation of C and transfered for the generation of C′. As above,
we denote DLCSCom denotes the use of DLCS with the encryption key ek. The usual commit/decommit processes
are described on Figure 6 in the Appendix B. On Figure 1, one can find the DLCSCom′ scheme where one can
implicitly check the opening with an SPHF. These two constructions essentially differ with χ = HK(C′) (for the
SPHF implicit check) instead of χ = HK(M, C′) (for the explicit check). We stress that with this alteration,
the DLCSCom′ scheme is not a real commitment scheme (not formally extractable/binding): in DLCSCom′,
the sender can indeed encrypt M in C and N 6= 1G in C′, and then, the global ciphertext C × C′ε contains
M ′ = MN ε 6= M , whereas one would have extracted M from C. But M ′ is unknown before ε is sent, and thus,
if one checks the membership of M ′ to a sparse language, it will unlikely be true.

Multi-Message Schemes. One can extend these encryption and commitment schemes to vectors of n mes-
sages (see the Appendix B). We will denote them n-DLCSCom′ or n-DLCSCom for the commitment schemes.
They consist in encrypting each message with independent random coins in Ci = (ui, ei, vi) but the same
ξ = HK(`, (ui), (ei)), together with independent companion ciphertexts C′i of 1G, still with the same ξ for the

doubled version. In the latter case, n independent challenges εi
$← Z∗p are then sent to lead to the full commit-

ment (Ci×C′εii) with random coins zri = ri + εiai and zsi = si + εibi. Again, if one of the companion ciphertext
C′i does not encrypt 1G, the full commitment encrypts a vector with at least one unpredictable component M ′i .
Several non-unity components in the companion ciphertexts would lead to independent components in the full
commitment. For languages sparse enough, this definitely turns out not to be in the language.

4 SPHF for Implicit Proofs of Membership

In [ACP09], Abdalla et al. presented a way to compute a conjunction or a disjunction of languages by some
simple operations on their projection keys. Therefore all languages presented afterward can easily be combined
together. However as the original set of manageable languages was not really developed, we are going to present
several steps to extend it, and namely in order to cover some languages useful in various AKE instantiations.

We will show that almost all the vast family of languages covered by the Groth-Sahai methodology [GS08]
can be addressed by our approach too. More precisely, we can handle all the linear pairing product equations,
when witnesses are committed using our above (multi-message) DLCSCom′ commitment scheme, or even the
non-equivocable LCSCom version. This will be strong enough for our applications. For using them in black-box to
build our LAKE protocol, one should note that the projection key is computed from the ciphertext C when using
the simple LCSCom commitment, but also when using the DLCSCom′ version. The full commitment C × C′ε is
not required, but ξ only, which is known as soon as C is given (or the vector (Ci)i for the multi-message version).
Of course, the hash value will then depend on the full commitment (either C for the LCSCom commitment, or
C · C′ε for the DLCSCom′ commitment).

This will be relevant to our AKE problem: equality of two passwords, in PAKE protocols; corresponding
signing/verification keys associated with a valid signature on a pseudonym or a hidden identity, in secret

6

handshakes; valid credentials, in CAKE protocols. All those tests are quite similar: one has to show that the
ciphertexts are valid and that the plaintexts satisfy the expected relations in a group. We first illustrate that
with commitments of Waters signatures of a public message under a committed verification key. We then explain
the general method. The formal proofs are provided in the Appendix C.

4.1 Commitments of Signatures

Let us consider the Waters signature [Wat05] in a symmetric bilinear group, as reviewed in the Appendix A.3,
and then we just need to recall that, in a pairing-friendly setting (p,G,GT , e), with public parameters (F , g, h),
and a verification key vk, a signature σ = (σ1, σ2) is valid with respect to the message M under the key vk if it
satisfies e(σ1, g) = e(h, vk) · e(F(M), σ2).

A similar approach has already been followed in [BPV12], however not with a Linear Cramer-Shoup com-
mitment scheme, nor with such general languages. We indeed first consider the language of the signatures
(σ1, σ2) ∈ G2 of a message M ∈ {0, 1}k under the verification key vk ∈ G, where M is public but vk is pri-
vate: L(pub, priv), where priv = vk and pub = M . One will thus commit the pair (vk, σ1) ∈ G2 with the label
` = (M,σ2) using a 2-DLCSCom′ commitment and then prove the commitment actually contains (vk, σ1) such
that e(σ1, g) = e(h, vk) · e(F(M), σ2). We insist on the fact that σ1 only has to be encrypted, and not σ2, in
order to hide the signature, since the latter σ2 is a random group element. If one wants unlinkability between
signature commitments, one simply needs to re-randomize (σ1, σ2) before encryption. Hence σ2 can be sent in
clear, but bounded to the commitment in the label, together with the pub part of the language. In order to
prove the above property on the committed values, we will use conjunctions of SPHF: first, to show that each
commitment is well-formed (valid ciphertexts), and then that the associated plaintexts verify the linear pairing
equation, where the committed values are underlined: e(σ1, g) = e(h, vk) · e(F(M), σ2) Note that vk is not used
as a committed value for this verification of the membership of σ to the language since this is the verification
key expected by the verifier, specified in the private part priv, which has to be independently checked with
respect to the committed verification key. This is enough for the affiliation-hiding property. We could consider
the similar language where M ∈ {0, 1}k is in the word too: e(σ1, g) = e(h, vk) ·e(F(M), σ2), and then one should

commit M , bit-by-bit, and then use a (k + 2)-DLCSCom′ commitment.

4.2 Linear Pairing Product Equations

Instead of describing in details the SPHF for the above examples, let us show it for a more general framework:
we considered

e(σ1, g) = e(h, vk) · e(F(M), σ2) or e(σ1, g) = e(h, vk) · e(F(M), σ2),

where the unknowns are underlined. These are particular instantiations of t simultaneous equations(∏
i∈Ak

e(Yi,Ak,i)
)
·
(∏
i∈Bk

Zizk,i
)

= Bk, for k = 1, . . . , t,

where Ak,i ∈ G, Bk ∈ GT , and zk,i ∈ Zp, as well as Ak ⊆ {1, . . . ,m} and Bk ⊆ {m+1, . . . , n} are public, but the
Yi ∈ G and Zi ∈ GT are simultaneously committed using the multi-message DLCSCom′ or LCSCom commitments
scheme, in G or GT respectively. This is more general than the relations covered by [CCGS10], since one can
also commit scalars bit-by-bit. In the Appendix C.4, we detail how to build the corresponding SPHF, and prove
the soundness of our approach. For the sake of clarity, we focus here to a single equation only, since multiple
equations are just conjunctions. We can even consider the simpler equation

∏i=m
i=1 Zi

zi = B, since one can lift
any ciphertext from G to a ciphertext in GT , setting Zi = e(Yi,Ai), as well as, for j = 1, 2, 3, Gi,j = e(gj ,Ai)
and for j = 1, 2, Hi,j = e(hj ,Ai), Ci,j = e(cj ,Ai), Di,j = e(dj ,Ai), to lift all the group basis elements. Then, one

transforms Ci = LCS∗(`, ek,Yi, ξ; zi) = (ui = (g
zri
1 , g

zsi
2 , g

zri+zsi
3), ei = h

zri
1 h

zsi
2 · Yi, vi = (c1d

ξ
1)
zri · (c2dξ2)zsi) into

(Ui = (G
zri
i,1 , G

zsi
i,2 , G

zri+zsi
i,3), Ei = H

zri
i,1 H

zsi
i,2 · Zi, Vi = (Ci,1D

ξ
i,1)

zri · (Ci,2Dξ
i,2)

zsi). Encryptions of Zi originally
in GT use constant basis elements for j = 1, 2, 3, Gi,j = Gj = e(gj , g) and for j = 1, 2, Hi,j = Hj = e(hj , g),
Ci,j = Cj = e(cj , g), Di,j = Dj = e(dj , g).

The commitments have been generated in G and GT simultaneously using the m-DLCSCom′ version, with a
common ξ, where the possible combination with the companion ciphertext to the power ε leads to the above Ci,

7

thereafter lifted to GT . For the hashing keys, one picks random scalars (λ, (ηi, θi, κi, µi)i=1,...,m)
$← Z4m+1

p , and

sets hki = (ηi, θi, κi, λ, µi). One then computes the projection keys as hpi = (gηi1 g
κi
3 h

λ
1(c1d

ξ
1)
µi , gθi2 g

κi
3 h

λ
2(c2d

ξ
2)
µi) ∈

G2. The hash value is ∏
i

e(uηii,1 · u
θi
i,2 · u

κi
i,3 · e

λ
i · v

µi
i ,Ai)× B

−λ =
∏
i

e(hp
zri
i,1 hp

zsi
i,2 ,Ai),

where Ai is the constant used to compute Zi = e(Yi,Ai) and to lift ciphertexts from G to GT , or Ai = gzi if
the ciphertext was already in GT . These evaluations can be computed either from the commitments and the
hashing keys, or from the projection keys and the witnesses. We insist on the fact that, whereas the hash values
are in GT , the projection keys are in G even if the ciphertexts are initially in GT . We stress again that the
projection keys require the knowledge of ξ only: known from the LCSCom commitment or the first part C of the
DLCSCom′ commitment.

5 Language-Authenticated Key Exchange

5.1 The Ideal Functionality

We generalize the Password-Authenticated Key Exchange functionality Fpake (first provided in [CHK+05]) to
more complex languages: the players agree on a common secret key if and only if they own words that lie in the
languages the partners have in mind. More precisely, after an agreement on pub between Pi and Pj (modeled
here by the use of the split functionality, see below), player Pi uses a word Wi belonging to Li = LRi(pub, privi)
and it expects its partner Pj to use a word Wj belonging to the language L′j = LRj (pub, priv

′
j), and vice-versa

for Pj and Pi. We assume relations Ri and Rj to be specified by the kind of protocol we study (PAKE, Verifier-
based PAKE, secret handshakes, . . .) and so the languages are defined by the additional parameters pub, privi
and privj only: they both agree on the public part pub, to be possibly parsed in a different way by each player
for each language according to the relations. Note however that the respective languages do not need to be
the same or to use similar relations: authentication means could be totally different for the 2 players. The key
exchange should succeed if and only if the two following pairs of equations hold: (L′i = Li and Wi ∈ Li) and
(L′j = Lj and Wj ∈ Lj).

Description. In the initial Fpake functionality [CHK+05], the adversary was given access to a TestPwd-query,
which modeled the on-line dictionary attack. But it is known since [BCL+05] that it is equivalent to use the split
functionality model [BCL+05], generate the NewSession-queries corresponding to the corrupted players and tell
the adversary (on behalf of the corrupted player) whether the protocol should succeed or not. Both methods
enable the adversary to try a credential for a player (on-line dictionary attack). The second method (that we
use here) implies allowing S to ask NewSession-queries on behalf of the corrupted player, and letting it to be
aware of the success or failure of the protocol in this case: the adversary learns this information only when it
plays on behalf of a player (corruption or impersonation attempt). This is any way an information it would learn
at the end of the protocol. We insist that third parties will not learn whether the protocol succeeded or not,
as required for secret handshakes. To this aim, the NewKey-query informs in this case the adversary whether
the credentials are consistent with the languages or not. In addition, the split functionality model guarantees
from the beginning which player is honest and which one is controlled by the adversary. This finally allows us
to get rid of the TestPwd-query. The Flake functionality is presented in Figure 2 and the corresponding split
functionality sFlake in Figure 3, where the languages are formally described and compared using the pub and
priv parts.

The security goal is to show that the best attack for the adversary is a basic trial execution with a credential
of its guess or choice: the proof will thus consist in emulating any real-life attack by either a trial execution by
the adversary, playing as an honest player would do, but with a credential chosen by the adversary or obtained
in any way; or a denial of service, where the adversary is clearly aware that its behavior will make the execution
fail.

5.2 A Generic UC-Secure LAKE Construction

Intuition. Using smooth projective hash functions on commitments, one can generically define a LAKE protocol
as done in [ACP09]. The basic idea is to make the player commit to their private information (for the expected

8

The functionality Flake is parametrized by a security parameter k and a public parameter pub for the languages. It
interacts with an adversary S and a set of parties P1,. . . ,Pn via the following queries:

– New Session: Upon receiving a query (NewSession : sid, Pi, Pj ,Wi, Li = L(pub, privi), L
′
j = L(pub, priv′j)) from Pi,

• If this is the first NewSession-query with identifier sid, record the tuple (Pi, Pj ,Wi, Li, L
′
j , initiator). Send

(NewSession; sid, Pi, Pj , pub, initiator) to S and Pj .
• If this is the second NewSession-query with identifier sid and there is a record (Pj , Pi,Wj , Lj , L

′
i, initiator),

record the tuple (Pj , Pi,Wj , Lj , L
′
i, initiator,Wi, Li, L

′
j , receiver). Send (NewSession; sid, Pi, Pj , pub, receiver) to S

and Pj .

– Key Computation: Upon receiving a query (NewKey : sid) from S, if there is a record of the form (Pi, Pj ,Wi,
Li, L

′
j , initiator,Wj , Lj , L

′
i, receiver) and this is the first NewKey-query for session sid, then

• If (L′i = Li and Wi ∈ Li) and (L′j = Lj and Wj ∈ Lj), then pick a random key sk of length k and store (sid, sk).
In addition, only if one player is corrupted, send (sid, success) to the adversary.

• Else, store (sid,⊥), and send (sid, fail) to the adversary if one player is corrupted.
– Key Delivery: Upon receiving a query (SendKey : sid, Pi, sk) from S, then

• if there is a record of the form (sid, sk′), then, if both players are uncorrupted, output (sid, sk′) to Pi. Otherwise,
output (sid, sk) to Pi.

• if there is a record of the form (sid,⊥), then pick a random key sk′ of length k and output (sid, sk′) to Pi.

Figure 2. Ideal Functionality Flake

Given the functionality Flake, the split functionality sFlake proceeds as follows:

– Initialization:

• Upon receiving (Init, sid, pubi) from party Pi, send (Init, sid, Pi, pubi) to the adversary.
• Upon receiving a message (Init, sid, Pi, H, pub, sidH) from S, where H = {Pi, Pj} is a set of party identities, check that Pi

has already sent (Init, sid, pubi) and that for all recorded (H ′, pub′, sidH′), either H = H ′, pub = pub′ and sidH = sidH′

or H and H ′ are disjoint and sidH 6= sidH′ . If so, record the pair (H, pub, sidH), send (Init, sid, sidH , pub) to Pi, and

invoke a new functionality (Flake, sidH , pub) denoted as F (H,pub)
lake and with set of honest parties H.

– Computation:

• Upon receiving (Input, sid,m) from party Pi, find the set H such that Pi ∈ H, the public value pub recorded, and

forward m to F (H,pub)
lake .

• Upon receiving (Input, sid, Pj , H,m) from S, such that Pj /∈ H, forward m to F (H,pub)
lake as if coming from Pj .

• When F (H,pub)
lake generates an output m for party Pi ∈ H, send m to Pi. If the output is for Pj /∈ H or for the adversary,

send m to the adversary.

Figure 3. Split Functionality sFlake

languages and the owned words), and eventually the smooth projective hash functions will be used to make
implicit validity checks of the global relation.

To this aim, we use the commitments and associated smooth projective hash functions as described in
Sections 3 and 4. More precisely, all examples of SPHF in Section 4 can be used on extractable commitments
divided into one or two parts (the non-equivocable LCSCom or the equivocable DLCSCom′ commitments, see
Figure 1). The relations on the committed values will not be explicitly checked, since the values will never be
revealed, but will be implicitly checked using SPHF. It is interesting to note that in both cases (one-part or
two-part commitment), the projection key will only depend on the first part of the commitment.

As it is often the case in the UC setting, we need the initiator to use stronger primitives than the receiver.
They both have to use non-malleable and extractable commitments, but the initiator will use a commitment
that is additionally equivocable, the DLCSCom′ in two parts ((Ci, C′i) and Comi = Ci · C′i

ε), while the receiver
will only need the basic LCSCom commitment in one part (Comj = Cj).

As already explained, SPHF will be used to implicitly check whether (L′i = Li and Wi ∈ Li) and (L′j = Lj
and Wj ∈ Lj). But since in our instantiations private parameters priv and words W will have to be committed,
the structure of these commitments will thus be publicly known in advance: commitments of P-elements and
S-elements. Section 6 discusses on the languages captured by our definition, and illustrates with some AKE
protocols. However, while these P and S sets are embedded in Gn from some n, it might be important to prove
that the committed values are actually in P and S (e.g., one can have to prove it commits bits, whereas messages
are first embedded as group elements in G of large order p). This will be an additional language-membership
to prove on the commitments.

This leads to a very simple protocol described on Figure 4. Note that if a player wants to make external
adversaries think he owns an appropriate word, as it is required for Secret Handshakes, he can still play, but

9

Execution between Pi and Pj , with session identifier sid.

– Preliminary Round: each user generates a pair of signing/verification keys (SK,VK) and sends VK together with its
contribution to the public part of the language.

We denote by `i = (sid, ssid, Pi, Pj , pub,VKi,VKj) and by `j = (sid, ssid, Pi, Pj , pub,VKj ,VKi), where pub is the combination
of the contributions of the two players. The initiator now uses a word Wi in the language L(pub, privi), and the receiver uses
a word Wj in the language L(pub, privj), possibly re-randomized from their long-term secrets (*). We assume commitments
and associated smooth projective hash functions exist for these languages.

– First Round: user Pi (with random tape ωi) generates a multi-DLCSCom′ commitment on (privi, priv
′
j ,Wi) in (Ci, C′i),

where Wi has been randomized in the language, under the label `i. It also computes a Pedersen commitment on C′i in
C′′i (with random exponent t). It then sends (Ci, C′′i) to Pj ;

– Second Round: user Pj (with random tape ωj) computes a multi-LCS commitment on (privj , priv
′
i,Wj) in Comj = Cj ,

with witness r, where Wj has been randomized in the language, under the label `j . It then generates a challenge ε on
Ci and hashing/projection keys (**) hki and hpi associated to Ci (which will be associated to the future Comi). It finally
signs all the flows using SKj in σj , and sends (Cj , ε, hpi, σj) to Pi;

– Third Round: user Pi first checks the signature σj , computes Comi = Ci × C′i
ε

and witness z (from ε and ωi), it
generates hashing/projection keys hkj and hpj associated to Comj . It finally signs all the flows using SKi in σi, and
sends (C′i, t, hpj , σi) to Pj ;

– Hashing: Pj first checks the signature σi and the correct opening of C′′i into C′i, it computes Comi = Ci × C′i
ε
.

Pi computes Ki and Pj computes Kj as follows:

Ki = Hash(hkj , {(priv′j , privi)} × L(pub, priv′j), `j ,Comj) · ProjHash(hpi, {(privi, priv
′
j)} × L(pub, privi), `i,Comi; z)

Kj = ProjHash(hpj , {(privj , priv
′
i)} × L(pub, privj), `j ,Comj ; r) · Hash(hki, {(priv′i, privj)} × L(pub, priv′i), `i,Comi)

(*) As explained in Section 1, recall that the languages considered depend on two possibly different relations, namely
Li = LRi(pub, privi) and Lj = LRj (pub, privj), but we omit them for the sake of clarity. We assume they are both self-
randomizable.
(**) Recall that the SPHF is constructed in such a way that this projection key does not depend on C′i and is indeed
associated to the future whole Comi.

Figure 4. Language-based Authenticated Key Exchange from a Smooth Projective Hash Function on Commitments

will compute everything with dummy words, and will replace the ProjHash evaluation by a random value, which
will lead to a random key at the end.

Security Analysis. Since we have to assume common pub, we make a first round (with flows in each direction)
where the players send their contribution, to come up with pub. These flows will also be used to know if there
is a player controlled by the adversary (as with the Split Functionality [BCL+05]). In case the languages have
empty pub, these additional flows are not required, since the Split Functionality can be applied on the committed
values. The signing key for the receiver is not required anymore since there is one flow only from its side. This
LAKE protocol is secure against static corruptions. The proof is provided in the Appendix D, and is in the
same vein as the one in [CHK+05,ACP09]. However, it is a bit more intricate:

– in PAKE, when one is simulating a player, and knows the adversary used the correct password, one simply
uses this password for the simulated player. In LAKE, when one knows the language expected by the
adversary for the simulated player and has to simulate a successful execution (because of success announced
by the NewKey-query), one has to actually include a correct word in the commitment: smooth projective
hash functions do not allow the simulator to cheat, equivocability of the commitment is the unique trapdoor,
but with a valid word. The languages must allow the simulator to produce a valid word W in L(pub, priv),
for any pub and priv ∈ P provided by the adversary or the environment. This will be the case in all the
interesting applications of our protocol (see Section 6): if priv defines a Waters’ verification key vk = gx,
with the master key s such that h = gs, the signing key is sk = hx = vks, and thus the simulator can sign
any message; if such a master key does not exist, one can restrict P, and implicitly check it with the SPHF
(the additional language-membership check, as said above). But since a random word is generated by the
simulator, we need the real player to derive a random word from his own word, and the language to be
self-randomizable.

– In addition, as already noted, our commitment DLCSCom′ is not formally binding (contrarily to the much
less efficient one used in [ACP09]). The adversary can indeed make the extraction give M from Ci, whereas

10

Comi will eventually contain M ′ if C′i does not encrypt (1G)n. However, since the actual value M ′ depends
on the random challenge ε, and the language is assumed sparse (otherwise authentication is easy), the
protocol will fail: this can be seen as a denial of service from the adversary.

Theorem 1. Our LAKE scheme from Figure 4 realizes the sFlake functionality in the Fcrs-hybrid model, in
the presence of static adversaries, under the DLin assumption and the security of the One-Time Signature.

Actually, from a closer look at the full proof, one can notice that Comj = Cj needs to be extractable, but
IND− CPA security is enough, which leads to a shorter ciphertext (2 group elements less if one uses a Linear
ciphertext instead of LCS). Similarly, one will not have to extract Wi from Ci when simulating sessions where
Pi is corrupted. As a consequence, only the private parts of the languages have to be committed to in Comi in
the first and third rounds, whereas Wi can be encrypted independently with an IND− CPA encryption scheme
in the third round only (5 group elements less in the first round, and 2 group elements less in the third round
if one uses a Linear ciphertext instead of LCS).

6 Concrete Instantiations and Comparisons

In this section, we first give some concrete instantiations of several AKE protocols, using our generic protocol
of LAKE, and compare the efficiencies of those instantiations.

6.1 Possible Languages

As explained above, our LAKE protocol is provably secure for self-randomizable languages only. While this
notion may seem quite strong, most of the usual languages fall into it. For example, in a PAKE or a Verifier-
based PAKE scheme, the languages consist of a single word and so trivially given a word, each user is able to
deduce all the words in the language. One may be a little more worried about Waters Signature in our Secret
Handshake, and/or Linear pairing equations. However the self-randomizability of the languages is easy to show:

– Given a Waters signature σ = (σ1, σ2) over a message m valid under a verification key vk, one is able to
randomize the signature into any signature over the same message m valid under the same verification key
vk simply by picking a random s and computing σ′ = (σ1 · F(m)s, σ2 · gs).

– For linear pairing equations, with public parameters Ai for i = 1, . . . ,m and γi for i = m+ 1, . . . , n, and B,
given (X1, . . . ,Xm,Zm+1, . . . ,Zn) verifying

∏m
i=1 e(Xi,Ai) ·

∏n
i=m+1Z

γi
i = B, one can randomize the word

in the following way:
• If m < n, one simply picks random (X ′1, . . . ,X ′m), (Z ′m+1, . . . ,Z ′n−1) and sets Z ′n = (B/(

∏m
i=1 e(X ′i ,Ai) ·∏n−1

i=m+1Z ′i
γi))1/γn ,

• Else, if m = n > 1, one picks random r1, . . . , rn−1 and sets X ′i = Xi · Arin , for i = 1, . . . ,m − 1 and
X ′m = Xm ·

∏m−1
i=1 A

−ri
i ,

• Else m = n = 1, this means only one word satisfies the equation. So we already have this word.

As we can see most of the common languages manageable with a SPHF are already self-randomizable. We now
show how to use them in concrete instantiations.

6.2 Concrete Instantiations

Password-Authenticated Key Exchange. Using our generic construction, we can easily obtain a PAKE
protocol, as described on Figure 5, where we optimize from the generic construction, since pub = ∅, removing
the agreement on pub, but still keeping the one-time signature keys (SKi,VKi) to avoid man-in-the-middle
attacks since it has another later flow: Pi uses a password Wi and expects Pj to own the same word, and thus
in the language L′j = Li = {Wi}; Pj uses a password Wj and expects Pi to own the same word, and thus in
the language L′i = Lj = {Wj}; The relation is the equality test between privi and privj , which both have no
restriction in G (hence P = G). As the word Wi, the language private parameters privi of a user and priv′j of
the expected language for the other user are the same, each user can commit in the protocol to only one value:
its password.

We kept the general description and notations in Figure 5, but Cj can be a simply IND− CPA encryption
scheme. It is quite efficient and relies on the DLin assumption, with DLCS for (Ci, C′i) and thus 10 group elements,

11

Pi uses a password Wi and Pj uses a password Wj . We denote ` = (sid, ssid, Pi, Pj).

– First Round: Pi (with random tape ωi) first generates a pair of signing/verification keys (SKi,VKi) and a DLCSCom′

commitment on Wi in (Ci, C′i), under `i = (`,VKi). It also computes a Pedersen commitment on C′i in C′′i (with random
exponent t). It then sends (VKi, Ci, C′′i) to Pj ;

– Second Round: Pj (with random tape ωj) computes a LCSCom commitment on Wj in Comj = Cj , with witness r, under
the label `. It then generates a challenge ε on Ci and hashing/projection keys hki and the corresponding hpi for the
equality test on Comi (”Comi is a valid commitment of Wj”, this only requires the value ξi computable thanks to Ci).
It then sends (Cj , ε, hpi) to Pi;

– Third Round: user Pi can compute Comi = Ci ×C′i
ε

and witness z (from ε and ωi), it generates hashing/projection keys
hkj and hpj for the equality test on Comj . It finally signs all the flows using SKi in σi and sends (C′i, t, hpj , σi) to Pj ;

– Hashing: Pj first checks the signature and the validity of the Pedersen commitment (thanks to t), it computes Comi =
Ci × C′i

ε
. Pi computes Ki and Pj computes Kj as follows:

Ki = Hash(hkj , L
′
j , `,Comj) · ProjHash(hpi, Li, `i,Comi; z)

Kj = ProjHash(hpj , Lj , `,Comj ; r) · Hash(hki, L
′
i, `i,Comi)

Figure 5. Password-based Authenticated Key Exchange

but a Linear encryption for Cj and thus 3 group elements. Projection keys are both 2 group elements. Globally,
Pi sends 13 groups elements plus 1 scalar, a verification key and a one-time signature, while Pj sends 5 group
elements and 1 scalar: 18 group elements and 2 scalars in total. We can of course instantiate it with the Cramer-
Shoup and ElGamal variants, under the DDH assumption: Pi sends 8 groups elements plus 1 scalar, a verification
key and a one-time signature, while Pj sends 3 group elements and 1 scalar (all group elements can be in the
smallest group): 11 group elements and 2 scalars in total.

Verifier-based PAKE. The above scheme can be modified into an efficient PAKE protocol that is additionally
secure against server compromise: the so-called verifier-based PAKE, where the client owns a password pw, while
the server knows a verifier only, such as gpw, so that in case of break-in to the server, the adversary will not
immediately get all the passwords.

To this aim, as usually done, one first does a PAKE with gpw as common password, then asks the client
to additionally prove it can compute the Diffie-Hellman value hpw for a basis h chosen by the server. Ideally,
we could implement this trick, where the client Pj just considers the equality test between the gpw and the
value committed by the server for the language L′i = Lj , while the server Pi considers the equality test with
(gpw, hpw), where h is sent as its contribution to the public part of the language by the server Li = L′j . Since the
server chooses h itself, it chooses it as h = gα, for an ephemeral random α, and can thus compute hpw = (gpw)α.
On its side, the client can compute this value since it knows pw. The client could thus commit to (gpw, hpw),
in order to prove its knowledge of pw, whereas the server could just commit to gpw. Unfortunately, from the
extractability of the server commitment, one would just get gpw, which is not enough to simulate the client.

To make it in a provable way, the server chooses an ephemeral h as above, and they both run the previous
PAKE protocol with (gpw, hpw) as common password, and mutually checked: h is seen as the pub part, hence
the preliminary flows are required.

Credential-Authenticated Key Exchange. In [CCGS10], the authors proposed instantiations of the CAKE

primitive for conjunctions of atomic policies that are defined algebraically by relations of the form
∏k
j=1 g

Fj
j = 1

where the gj ’s are elements of an abelian group and Fj ’s are integer polynomials in the variables committed by
the users.

The core of their constructions relies on their practical UC zero-knowledge proof. There is no precise instan-
tiation of such proof, but it is very likely to be inefficient. Their proof technique indeed requires to transform
the underlying Σ-protocols into corresponding Ω-protocols [GMY06] by verifiably encrypting the witness. An
Ω-protocol is a Σ-protocol with the additional property that it admits a polynomial-time straight-line extractor.
Since the witnesses are scalars in their algebraic relations, their approach requires either inefficient bit-per-bit
encryption of these witnesses or Paillier encryption in which case the problem of using group with different
orders in the representation and in the encryption requires additional overhead.

Even when used with Σ-protocols, their PAKE scheme without UC-security, requires at least two proofs of
knowledge of representations that involve at least 30 group elements (if we assume the encryption to be linear

12

Cramer Shoup), and some extra for the last proof of existence (cf. [CKS11]), where our PAKE requires less than
20 group elements. Anyway they say, their PAKE scheme is less efficient than [CHK+05], which needed 6 rounds
and around 30 modular exponentiations per user, while our efficient PAKE requires less than 40 exponentiations,
in total, in only 3 rounds. Our scheme is therefore more efficient than the scheme from [CHK+05] for the same
security level (i.e. UC-security with static corruptions).

Secret-Handshakes. We can also instantiate a (linkable) Secret Handshakes protocol, using our scheme with
two different languages: Pi will commit to a valid signature σi on a message mi (his identity for example),
under a private verification key vki, and expects Pj to commit to a valid signature on a message m′j under a
private verification key vk′j ; but Pj will do analogously with a signature σj on mj under vkj , while expecting a
signature on m′i under vk′i. The public parts of the signature (the second component) are sent in clear with the
commitments.

In a regular Secret Handshakes both users should use the same languages. But here, we have a more general
situation (called dynamic matching in [AKB07]): the two participants will have the same final value if and only
if they both belong to the organization the other expects. If one lies, our protocol guarantees no information
leakage. Furthermore, the semantic security of the session is even guaranteed with respect to the authorities,
in a forward-secure way (this property is also achieved in [JL09] but in a weaker security model). Finally, our
scheme supports revocation and can handle roles as in [AKB07].

Standard secret handshakes, like [AKB07], usually work with credentials delivered by a unique authority,
this would remove our need for a hidden verification key, and private part of the language. Both users would
only need to commit to signatures on their identity/credential, and show that they are valid. This would require
a dozen of group elements with our approach. Their construction requires only 4 elements under BDH, however
it relies on the asymmetric Waters IBE with only two elements, whereas the only security proof known for
such IBE [Duc10] requires an extra term in G2 which would render their technique far less efficient, as several
extra terms would be needed to expect a provably secure scheme. While sometimes less effective, our LAKE
approach can manage Secret Handshakes, and provide additional functionalities, like more granular control on
the credential as part of them can be expressly hidden by both the users. More precisely, we provide affiliation-
hiding property and let third parties unaware of the success/failure of the protocol.

Unlinkable Secret-Handshakes. Moving the users’ identity from the public pub part to individual private priv
part, and combining our technique with [BPV12], it is also possible to design an unlinkable Secret Handshakes
protocol [JL09] with practical efficiency. It illustrates the case where committed values have to be proven in
a strict subset of G, as one has to commit to bits: the signed message M is now committed and not in clear,
it thus has to be done bit-by-bit since the encoding G does not allow algebraic operations with the content to
apply the Waters function on the message. It is thus possible to prove the knowledge of a Waters signature on
a private message (identity) valid under a private verification key. Additional relations can be required on the
latter to make authentication even stronger.

Acknowledgments

This work was supported in part by the European Commission through the FP7-ICT-2011-EU-Brazil Program
under Contract 288349 SecFuNet and the ICT Program under Contract ICT-2007-216676 ECRYPT II.

References

[ACGP11] Michel Abdalla, Céline Chevalier, Louis Granboulan, and David Pointcheval. Contributory password-authenticated
group key exchange with join capability. In Aggelos Kiayias, editor, Topics in Cryptology – CT-RSA 2011, volume 6558
of Lecture Notes in Computer Science, pages 142–160. Springer, February 2011.

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projective hashing for conditionally extractable com-
mitments. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in Computer
Science, pages 671–689. Springer, August 2009.

[AKB07] Giuseppe Ateniese, Jonathan Kirsch, and Marina Blanton. Secret handshakes with dynamic and fuzzy matching. In
ISOC Network and Distributed System Security Symposium – NDSS 2007. The Internet Society, February / March 2007.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin, editor, Advances in
Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 41–55. Springer, August 2004.

13

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure computation without authentication.
In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science,
pages 361–377. Springer, August 2005.

[BDS+03] Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana K. Smetters, Jessica Staddon, and Hao-Chi Wong. Secret hand-
shakes from pairing-based key agreements. In IEEE Symposium on Security and Privacy, pages 180–196. IEEE Computer
Society, 2003.

[BFPV11] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Signatures on randomizable ciphertexts. In
Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011: 14th International Workshop
on Theory and Practice in Public Key Cryptography, volume 6571 of Lecture Notes in Computer Science, pages 403–422.
Springer, March 2011.

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols secure against dictionary
attacks. In 1992 IEEE Symposium on Security and Privacy, pages 72–84. IEEE Computer Society Press, May 1992.

[BPV12] Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-optimal privacy-preserving protocols with smooth
projective hash functions. In Ronald Cramer, editor, TCC 2012, volume 7194 of Lecture Notes in Computer Science,
pages 94–111, Springer, March 2012.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd Annual Symposium
on Foundations of Computer Science, pages 136–145. IEEE Computer Society Press, October 2001.

[CCGS10] Jan Camenisch, Nathalie Casati, Thomas Groß, and Victor Shoup. Credential authenticated identification and key
exchange. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer
Science, pages 255–276. Springer, August 2010.

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Universally composable password-
based key exchange. In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture
Notes in Computer Science, pages 404–421. Springer, May 2005.

[CKP07] Ronald Cramer, Eike Kiltz, and Carles Padró. A note on secure computation of the Moore-Penrose pseudoinverse and its
application to secure linear algebra. In Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622
of Lecture Notes in Computer Science, pages 613–630. Springer, August 2007.

[CKS11] Jan Camenisch, Stephan Krenn, and Victor Shoup. A framework for practical universally composable zero-knowledge
protocols. In Advances in Cryptology – ASIACRYPT 2011, Lecture Notes in Computer Science, pages 449–467. Springer,
December 2011.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh, editor, Advances in Cryptology –
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 265–281. Springer, August 2003.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext
attack. In Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer
Science, pages 13–25. Springer, August 1998.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key
encryption. In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 45–64. Springer, April / May 2002.

[Duc10] Léo Ducas. Anonymity from asymmetry: New constructions for anonymous HIBE. In Josef Pieprzyk, editor, Topics in
Cryptology – CT-RSA 2010, volume 5985 of Lecture Notes in Computer Science, pages 148–164. Springer, March 2010.

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key exchange. In Eli Biham,
editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 524–
543. Springer, May 2003. http://eprint.iacr.org/2003/032.ps.gz.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

[GMY06] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge protocols using signatures. Journal
of Cryptology, 19(2):169–209, April 2006.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P. Smart, editor, Advances
in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 415–432. Springer, April
2008.

[JL09] Stanislaw Jarecki and Xiaomin Liu. Private mutual authentication and conditional oblivious transfer. In Shai Halevi,
editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 90–107.
Springer, August 2009.

[Lin11] Yehuda Lindell. Highly-efficient universally-composable commitments based on the DDH assumption. In Kenneth G.
Paterson, editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science,
pages 446–466. Springer, May 2011.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan Feigenbaum,
editor, Advances in Cryptology – CRYPTO’91, volume 576 of Lecture Notes in Computer Science, pages 129–140. Springer,
August 1992.

[Sha07] Hovav Shacham. A cramer-shoup encryption scheme from the linear assumption and from progressively weaker linear
variants. Cryptology ePrint Archive, Report 2007/074, 2007. http://eprint.iacr.org/2007/074.pdf.

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor, Advances in
Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 114–127. Springer, May
2005.

14

A Preliminaries

A.1 Formal Definitions of the Primitives

We first recall the definitions of the basic tools, with the security notions with success/advantage that all depend
on a security parameter (which is omitted here for simplicity of notation).

Hash Function Family. A hash function family H is a family of functions HK from {0, 1}∗ to a fixed-length
output, either {0, 1}k or Zp. Such a family is said collision-resistant if for any adversary A on a random function

HK
$← H, it is hard to find a collision. More precisely, we denote

SucccollH (A) = Pr[HK
$← H, (m0,m1)← A(HK) : HK(m0) = HK(m1)], SucccollH (t) = max

A≤t
{SucccollH (A)}.

Labeled encryption scheme. A labeled public-key encryption scheme is defined by four algorithms:

– Setup(1k), where k is the security parameter, generates the global parameters param of the scheme;
– KeyGen(param) generates a pair of keys, the encryption key ek and the decryption key dk;
– Encrypt(`, ek,m; r) produces a ciphertext c on the input message m ∈M under the label ` and encryption

key ek, using the random coins r;
– Decrypt(`, dk, c) outputs the plaintext m encrypted in c under the label `, or ⊥.

An encryption scheme E should satisfy the following properties

– Correctness: for all key pair (ek, dk), any label `, all random coins r and all messages m,

Decrypt(`, dk,Encrypt(`, ek,m; r)) = m.

– Indistinguishability under chosen-ciphertext attacks:
this security notion can be formalized by the following
security game, where the adversary A keeps some inter-
nal state between the various calls FIND and GUESS, and
makes use of the oracle ODecrypt:

• ODecrypt(`, c): This oracle outputs the decryption
of c under the label ` and the challenge decryption
key dk. The input queries (`, c) are added to the list
CT .

Expind−cca−bE,A (k)

1. param← Setup(1k)
2. (ek, dk)← KeyGen(param)
3. (`∗,m0,m1)← A(FIND : ek,ODecrypt(·, ·))
4. c∗ ← Encrypt(`, ek,mb)
5. b′ ← A(GUESS : c∗,ODecrypt(·, ·))
6. IF (`∗, c∗) ∈ CT RETURN 0
7. ELSE RETURN b′

The advantages are

Advind−ccaE (A) = Pr[Expind−cca−1E,A (k) = 1]− Pr[Expind−cca−0E,A (k) = 1] Advind−ccaE (t) = max
A≤t
{Advind−ccaE (A)}.

Labeled commitment scheme. A labeled commitment scheme is defined by three algorithms:

– Setup(1k), where k is the security parameter, generates the global parameters param of the scheme;
– Commit(`,m; r) produces a commitment c and the opening information d on the input message m ∈ M

under the label `, using the random coins r;
– Decommit(`, c,m, d) checks the validity of the opening information d on the commitment c for the message
m under the label `. It answers 1 for true, and 0 for false.

A commitment scheme C should satisfy the following properties

– Correctness: for any label `, and all messages m, if (c, d)← Commit(`,m; r), then Decommit(`, c,m, d) = 1.
– Hiding : this security notion is similar to the indistinguishability under chosen-plaintext attacks for encryp-

tion, which means that c does not help to distinguish between two candidates m0 and m1 as committed
values.

– Binding : this security notion is more an unforgeability notion, which means that for any commitment c, it
should be hard to open it in two different ways, which means to exhibit (m0, d0) and (m1, d1), such that
m0 6= m1 and Decommit(`, c,m0, d0) = Decommit(`, c,m1, d1) = 1.

15

The commitment algorithm can be interactive between the sender and the receiver, but the hiding and the
binding properties should still hold. Several additional properties are sometimes required:

– Extractability : an indistinguishable Setup procedure also outputs a trapdoor that allows a extractor to get
the committed value m from any commitment c. More precisely, if c can be open in a valid way, the extractor
can get this value from the commitment.

– Equivocability : an indistinguishable Setup procedure also outputs a trapdoor that allows a simulator to
generate commitments that can thereafter be open in any way.

– Non-Malleability : it should be hard, from a commitment c to generate a new commitment c′ 6= c whose
committed values are in relation.

It is well-known that any IND-CCA encryption scheme leads to a non-malleable and extractable commitment
scheme [GL03].

Signature scheme. A signature scheme is defined by four algorithms:

– Setup(1k), where k is the security parameter, generates the global parameters param of the scheme;
– KeyGen(param) generates a pair of keys, the verification key vk and the signing key sk;
– Sign(sk,m; s) produces a signature σ on the input message m, under the signing key sk, and using the

random coins s;
– Verif(vk,m, σ) checks whether σ is a valid signature on m, w.r.t. the public key vk; it outputs 1 if the

signature is valid, and 0 otherwise.

A signature scheme S should satisfy the following properties

– Correctness: for all key pair (vk, sk), all random coins s and all messages m, Verif(vk,m,Sign(sk,m; s)) = 1.

– Existential unforgeability under (adaptive) chosen-message attacks: this
security notion can be formalized by the following security game, where
it makes use of the oracle OSign:

• OSign(m): This oracle outputs a valid signature on m under the
signing key sk. The input queries m are added to the list SM.

Expeuf−cma
S,A (k)

1. param← Setup(1k)
2. (vk, sk)← KeyGen(param)
3. (m∗, σ∗)← A(vk,OSign(·))
4. b← Verif(vk,m∗, σ∗)
5. IF M ∈ SM RETURN 0
6. ELSE RETURN bThe success probabilities are

Succeuf−cma
S (A) = Pr[Expeuf−cma

S,A (k) = 1] Succeuf−cma
S (k, t) = max

A≤t
{Succeuf−cma

S (A)}.

Smooth Projective Hash Functions A smooth projective hash function system is defined on a language L, with
five algorithms:

– Setup(1k) generates the system parameters, according to a security parameter k;
– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk, L,W) derives the projection key hp, possibly depending on a word W ;
– Hash(hk, L,W) outputs the hash value from the hashing key;
– ProjHash(hp, L,W,w) outputs the hash value from the projection key and the witness w that W ∈ L.

The correctness of the scheme assures that if W is in L with w as a witness, then the two ways to compute
the hash values give the same result: Hash(hk, L,W) = ProjHash(hp, L,W,w). In our setting, these hash val-
ues will belong to a group G. The security is defined through two different notions, the smoothness and the
pseudo-randomness properties, where we use the distribution ∆(L,W) = {(hk, hp), hk ← HashKG(L), hp ←
ProjKG(hk, L,W)}:

– the smoothness property guarantees that if W 6∈ L, the hash value is statistically indistinguishable from a
random element, even knowing hp:

{(hp, G), (hk, hp)← ∆(L,W), G← Hash(hk, L,W)} ≈s {(hp, G), (hk, hp)← ∆(L,W), G
$← G}.

We define by Advsmooth the statistical distance between the two distributions.
– the pseudo-randomness property guarantees that even for a word W ∈ L, but without the knowledge of a

witness w, the hash value is computationally indistinguishable from a random element, even knowing hp:

{(hp, G), (hk, hp)← ∆(L,W), G← Hash(hk, L,W)} ≈c {(hp, G), (hk, hp)← ∆(L,W), G
$← G}.

We define by Advpr(t) the computational distance between the two distributions for t-time distinguishers.

16

A.2 Computational Assumptions

The three classical assumptions we use along this paper are: the computational Diffie-Hellman (CDH), the
decisional Diffie-Hellman (DDH) and the decisional Linear (DLin) assumptions. Our constructions essentially
rely on the DLin assumption, that implies the CDH. It is the most general since it (presumably) holds in many
groups, with or without pairing. Some more efficient instantiations will rely on the DDH assumption but in
more specific groups.

Definition 2 (Computational Diffie-Hellman (CDH)). The Computational Diffie-Hellman assumption

says that, in a group (p,G, g), when we are given (ga, gb) for unknown random a, b
$← Zp, it is hard to compute

gab. We define by Succcdhp,G,g(t) the best advantage an adversary can have in finding gab within time t.

Definition 3 (Decisional Diffie-Hellman (DDH)). The Decisional Diffie-Hellman assumption says that, in

a group (p,G, g), when we are given (ga, gb, gc) for unknown random a, b
$← Zp, it is hard to decide whether

c = ab mod p (a DH tuple) or c
$← Zp (a random tuple). We define by Advddhp,G,g(t) the best advantage an

adversary can have in distinguishing a DH tuple from a random tuple within time t.

Definition 4 (Decisional Linear Problem (DLin)). The Decisional Linear Problem [BBS04] says that, in a

group (p,G, g), when we are given (gx, gy, gxa, gyb, gc) for unknown random x, y, a, b
$← Zp, it is hard to decide

whether c = a+b mod p (a linear tuple) or c
$← Zp (a random tuple). We define by Advdlinp,G,g(t) the best advantage

an adversary can have in distinguishing a linear tuple from a random tuple within time t.

A.3 Some Primitives in Symmetric Groups – Based on DLin

Linear Cramer-Shoup (LCS) encryption scheme. The Linear Cramer-Shoup encryption scheme [Sha07]
can be tuned to a labeled public-key encryption scheme:

– Setup(1k) generates a group G of order p, with three independent generators (g1, g2, g3)
$← G3;

– KeyGen(param) generates dk = (x1, x2, x3, y1, y2, y3, z1, z2, z3)
$← Z9

p, and sets, for i = 1, 2, ci = gxii g
x3
3 ,

di = gyii g
y3
3 , and hi = gzii g

z3
3 . It also chooses a hash function HK in a collision-resistant hash family H (or

simply a Universal One-Way Hash Function). The encryption key is ek = (c1, c2, d1, d2, h1, h2,HK).

– Encrypt(`, ek,M ; r, s), for a message M ∈ G and two random scalars r, s
$← Zp, the ciphertext is C = (u =

(gr1, g
s
2, g

r+s
3), e = M · hr1hs2, v = (c1d

ξ
1)
r(c2d

ξ
2)
s), where v is computed afterwards with ξ = HK(`,u, e).

– Decrypt(`, dk, C = (u, e, v)): one first computes ξ = HK(`,u, e) and checks whether ux1+ξy11 ·ux2+ξy22 ·ux3+ξy33
?=

v. If the equality holds, one computes M = e/(uz11 u
z2
2 u

z3
3) and outputs M . Otherwise, one outputs ⊥.

This scheme is indistinguishable against chosen-ciphertext attacks, under the DLin assumption and if one uses
a collision-resistant hash function H.

Waters signature. The Waters signature [Wat05] is defined as follows:

– Setup(1k): In a pairing-friendly setting (p,G, g,GT , e), one chooses a random vector f = (f0, . . . , fk)
$← Gk+1

that defines the Waters hash function F(M) = f0
∏k
i=1 f

Mi
i for M ∈ {0, 1}k, and an extra generator h

$← G.
The global parameters param consist of all these elements (p,G, g,GT , e,f , h).

– KeyGen(param) chooses a random scalar x
$← Zp, which defines the public verification key as vk = gx, and

the secret signing key as sk = hx.

– Sign(sk,M ; s) outputs, for some random s
$← Zp, σ =

(
σ1 = sk · F(M)s, σ2 = gs

)
.

– Verif(vk,M, σ) checks whether e(σ1, g) ?= e(h, vk) · e(F(M), σ2).

This scheme is existentially unforgeable against (adaptive) chosen-message attacks [GMR88] under the CDH
assumption.

17

A.4 Some Primitives in Asymmetric Groups – Based on DDH

Cramer-Shoup encryption scheme. The Cramer-Shoup encryption scheme [CS98] can be tuned into a
labeled public-key encryption scheme:

– Setup(1k) generates a group G of order p, with a generator g

– KeyGen(param) generates (g1, g2)
$← G2, dk = (x1, x2, y1, y2, z)

$← Z5
p, and sets, c = gx11 g

x2
2 , d = gy11 g

y2
2 , and

h = gz1 . It also chooses a collision-resistant hash function HK in a hash family H (or simply a Universal
One-Way Hash Function). The encryption key is ek = (g1, g2, c, d, h,HK).

– Encrypt(`, ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp, the ciphertext is C = (`,u =
(gr1, g

r
2), e = M · hr, v = (cdξ)r), where v is computed afterwards with ξ = HK(`,u, e).

– Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether ux1+ξy11 ·ux2+ξy22
?= v. If the equality

holds, one computes M = e/(uz1) and outputs M . Otherwise, one outputs ⊥.

This scheme is indistinguishable against chosen-ciphertext attacks, under the DDH assumption and if one uses
a collision-resistant hash function H.

Waters signature (asymmetric). This variant of the Waters signature has been proposed and proved
in [BFPV11]:

– Setup(1k): In a bilinear group (p,G1, g1,G2, g1,GT , e), one chooses a random vector f = (f0, . . . , fk)
$←

Gk+1
1 , an extra generator h1

$← G1. The global parameters param consist of (p,G1, g1,G2, g1,GT , e,f , h1).

– KeyGen(param) chooses a random scalar x
$← Zp, which defines the public vk = gx1 , and the secret sk = hx1 .

– Sign(sk,M ; s) outputs, for some random s
$← Zp, σ =

(
σ1 = sk · F(M)s,σ2 = (gs1, g

s
1)
)
.

– Verif(vk,M, σ) checks whether e(σ1, g1) = e(h1, vk) · e(F(M), σ2,2), and e(σ2,1, g1) = e(g1, σ2,2).

This scheme is unforgeable under the following variant of the CDH assumption:

Definition 5 (The Advanced Computational Diffie-Hellman problem (CDH+)). In a pairing-friendly
environment (p,G1, g1,G2, g1,GT , e). The CDH+ assumption states that given (g1, g1, g

a
1 , g

a
1, g

b
1), for random

a, b ∈ Zp, it is hard to compute gab1 .

B Multi Double Linear Cramer-Shoup Commitment

B.1 Multi Double Linear Cramer-Shoup (n− DLCS) Encryption

We can extend the encryption scheme implicitly presented in Section 3 to vectors (Mi, Ni)i=1,...,n, partially
IND-CCA protected, with a common ξ. It of course also includes the n − LCS scheme on vectors (Mi)i, when
ignoring the C′ part, which is already anyway the case for the decryption oracle:

– Setup(1k) generates a group G of order p, with three independent generators (g1, g2, g3)
$← G3;

– KeyGen(param) generates dk = (x1, x2, x3, y1, y2, y3, z1, z2, z3)
$← Z9

p, and sets, for i = 1, 2, ci = gxii g
x3
3 ,

di = gyii g
y3
3 , and hi = gzii g

z3
3 . It also chooses a collision-resistant hash function HK . The encryption key is

ek = (c1, c2, d1, d2, h1, h2,HK).
– Encrypt(`, ek,M ; r, s), for a vector M ∈ Gn and two vectors r, s ∈ Znp , computes

C = (C1, . . . , Cn), where Ci = (ui = (gri1 , g
si
2 , g

ri+si
3), ei = Mi · hri1 h

si
2 , vi = (c1d

ξ
1)
ri(c2d

ξ
2)
si)

with the vi computed afterwards with ξ = HK(`,u1, . . . ,un, e1, . . . , en).
– Encrypt′(`, ek,N , ξ;a, b), for a vector N ∈ Gn and two vectors a, b ∈ Znp , computes

C′ = (C′1, . . . , C′n), where C′i = (αi = (gai1 , g
bi
2 , g

ai+bi
3), βi = Ni · hai1 h

bi
2 , γi = (c1d

ξ
1)
ai(c2d

ξ
2)
bi)

where the γi’s are computed with the above ξ = HK(`,u1, . . . ,un, e1, . . . , en), hence the additional input.
One can use both simultaneously: on input (`, ek,M ,N ; r, s,a, b), the global encryption algorithm first
calls Encrypt(`, ek,M ; r, s) and to get C and ξ, and then calls Encrypt′(`, ek,N , ξ;a, b) to get C′.

18

– Decrypt(`, dk, C, C′): one first parses C = (C1, . . . , Cn) and C′ = (C′1, . . . , C′n), where Ci = (ui, ei, vi) and C′i =
(αi, βi, γi), for i = 1, . . . , n, computes ξ = HK(`,u1, . . . ,un, e1, . . . , en) and checks whether, for i = 1, . . . , n,

ux1+ξy1i,1 ·ux2+ξy2i,2 ·ux3+ξy3i,3
?= vi (but not for the γi’s). If the equality holds, one computes Mi = ei/(u

z1
i,1u

z2
i,2u

z3
i,3)

and Ni = βi/(α
z1
i,1α

z2
i,2α

z3
i,3), and outputs (M = (M1, . . . ,Mn),N = (N1, . . . , Nn)). Otherwise, one outputs

⊥.

– PDecrypt(`, dk, C): is a partial decryption algorithm that does as above but working on the C part only to
get M = (M1, . . . ,Mn) or ⊥.

DLCS denotes the particular case where n = 1: DLCS(`, ek,M,N ; r, s, a, b) = (C, C′), with

C = (u = (gr1, g
s
2, g

r+s
3), e = M · hr1hs2, v = (c1d

ξ
1)
r(c2d

ξ
2)
s) = LCS(`, ek,M ; r, s),

C′ = (αi = (ga1 , g
b
2, g

a+b
3), β = N · ha1hb2, γ = (c1d

ξ
1)
a(c2d

ξ
2)
b) = LCS∗(`, ek, N, ξ; a, b)

where ξ = HK(`,u, e).

B.2 Security of the Multi Double Linear Cramer Shoup Encryption

Security model. This scheme is indistinguishable against partial-decryption chosen-ciphertext attacks, where
a partial-decryption oracle only is available, but even when we allow the adversary to choose M and N in two
different steps (see the security game below), under the DLin assumption and if one uses a collision-resistant
hash function H.

Indistinguishability against partial-decryption chosen-ciphertext attacks for vectors, in two steps: this security
notion can be formalized by the following security game, where the adversary A keeps some internal state
between the various calls FINDM , FINDN and GUESS. In the first stage FINDM , it receives the encryption key ek;
in the second stage FINDN , it receives the encryption of M b: C∗ = Encrypt(`, ek,M b); in the last stage GUESS it
receives the encryption of N b: C′∗ = Encrypt′(`, ek, ξ∗,N b), where ξ∗ is the value involved in C. During all these
stages, it can make use of the oracle ODecrypt(`, C), that outputs the decryption of C under the label ` and the
challenge decryption key dk, using PDecrypt(`, dk, C). The input queries (`, C) are added to the list CT .

Expind−pd−cca−bE,A (k, n)

1. param← Setup(1k); (ek, dk)← KeyGen(param)
2. (`∗,M0,M1)← A(FINDM : ek,ODecrypt(·, ·))
3. C∗ ← Encrypt(`∗, ek,M b)
4. (N0,N1)← A(FINDN : C∗,ODecrypt(·, ·))
5. C′∗ ← Encrypt′(`∗, ek, ξ∗,N b)
6. b′ ← A(GUESS : C′∗,ODecrypt(·, ·))
7. IF (`∗, C∗) ∈ CT RETURN 0
8. ELSE RETURN b′

The advantages are, where qd is the number of decryption queries:

Advind−pd−ccaE (A) = Pr[Expind−pd−cca−1E,A (k, n) = 1]− Pr[Expind−pd−cca−0E,A (k, n) = 1]

Advind−pd−ccaE (n, qd, t) = max
A≤t

Advind−pd−ccaE (A).

Theorem 6. The Multiple n − DLCS encryption scheme is IND-PD-CCA if H is a collision-resistant hash
function family, under the DLin assumption in G:

Advind−pd−ccan−DLCS (n, qd, t) ≤ 4n×
(
Advdlinp,G,g(t) + SucccollH (t) +

qd
p

)
.

Corollary 7. The Multiple n− LCS encryption scheme is IND-CCA if H is a collision-resistant hash function
family, under the DLin assumption in G.

19

Security proof. Let us be given a DLin challenge (g1, g2, g3, u1 = gr1, u2 = gs2, u3 = gt3), for which we have
to decide whether (u1, u2, u3) is a linear tuple in basis (g1, g2, g3), and thus t = r + s mod p, or a random
one. From an IND-PD-CCA adversary A against the encryption scheme, we built a DLin distinguisher B. The
latter first uses (g1, g2, g3) as the global parameters. It also picks x1, x2, x3, y1, y2, y3, z1, z2, z3

$← Z9
p and sets

ci = gxii g
x3
3 , di = gyii g

y3
3 , hi = gzii g

z3
3 , for i = 1, 2. It chooses a collision-resistant hash function HK and provides

A with the encryption key ek = (c1, c2, d1, d2, h1, h2,HK).

– In the initial game G0,
• A’s decryption queries are answered by B, simply using the decryption key dk.

• When A submits the first challenge vectors M0 = (M0,1, . . . ,M0,n) and M1 = (M1,1, . . . ,M1,n), with

a label `∗, B chooses a random bit b
$← {0, 1} and encrypts M b:

∗ it chooses two random vectors r∗, s∗
$← Znp

∗ it defines C∗i = (u∗i = (g
r∗i
1 , g

s∗i
2 , g

r∗i+s
∗
i

3), e∗i = Mb,i · h
r∗i
1 h

s∗i
2 , v

∗
i = (c1d

ξ∗

1)r
∗
i (c2d

ξ∗

2)s
∗
i), for i = 1, . . . , n,

where the v∗i ’s are computed with ξ∗ = HK(`∗,u∗1, . . . ,u
∗
n, e
∗
1, . . . , e

∗
n), and C∗ = (C∗1 , . . . , C∗n).

• When A submits the second challenge vectors N0 = (N0,1, . . . , N0,n) and N1 = (N1,1, . . . , N1,n),

∗ B chooses two random vectors a∗, b∗
$← Znp

∗ it defines C′∗i = (α∗i = (g
a∗i
1 , g

b∗i
2 , g

a∗i+b
∗
i

3), β∗i = Nb,i · h
a∗i
1 h

b∗i
2 , γ

∗
i = (c1d

ξ∗

1)a
∗
i (c2d

ξ∗

2)b
∗
i), for i =

1, . . . , n, where the γ∗i ’s are computed with the above ξ∗ = HK(`∗,u∗1, . . . ,u
∗
n, e
∗
1, . . . , e

∗
n), and

C′∗ = (C′∗1 , . . . , C′∗n).

• When A returns b′, B outputs b′ ?= b.

Pr
0

[1← B] = Pr
0

[b′ = b] = (Advind−pd−ccan−DLCS (A)− 1)/2.

– In game G1, where we assume t = r + s mod p, to encrypt the challenge vectors M b and N b, B does as
above, except for C∗1 : C∗1 = (u∗1 = (u1, u2, u3), e

∗
i = Mb,1 · uz11 u

z2
2 u

z3
3 , v

∗
1 = ux1+ξ

∗y1
1 ux2+ξ

∗y2
2 ux3+ξ

∗y3
3), which

actually defines r∗1 = r and s∗1 = s.

u∗1 = (g
r∗1
1 , g

s∗1
2 , g

r∗1+s
∗
1

3) e∗1 = Mb,1 · (g
r∗1
1)z1(g

s∗1
2)z2(g

r∗1+s
∗
1

3)z3 = Mb,1 · h
r∗1
1 h

s∗1
2

v∗1 = (g
r∗1
1)x1+ξ

∗y1(g
s∗1
2)x2+ξ

∗y2(g
r∗1+s

∗
1

3)x3+ξ
∗y3 = (c1d

ξ∗

1)r
∗
1 (c2d

ξ∗

2)s
∗
1

The challenge ciphertexts are identical to the encryptions of M b and N b in G0. Decryption queries are still
answered the same way. Hence the gap between this game and the previous game is 0.

Pr
1

[1← B] = Pr
0

[1← B] = (Advind−pd−ccan−DLCS (A)− 1)/2.

– In game G2, we now assume that t
$← Zp (a random tuple). First, we have to check that the incorrect

computation of v∗1 does not impact the probability to reject invalid ciphertexts, then we prove that e∗1 is
totally independent of Mb,1.

1. About the validity checks, ux1+ξy1i,1 ·ux2+ξy2i,2 ·ux3+ξy3i,3
?= vi, where ξ = HK(`,u1, . . . ,un, e1, . . . , en), three

cases can appear with respect to the challenge ciphertext C∗ = ((u∗1, e
∗
1, v
∗
1), . . . , (u∗n, e

∗
n, v
∗
n)):

(a) (`,u1, e1, . . . ,un, en) = (`∗,u∗1, e
∗
1, . . . ,u

∗
n, e
∗
n), then necessarily, for some i, vi 6= v∗i , then the check

on index i will fail since one value only is acceptable;
(b) (`,u1, e1, . . . ,un, en) 6= (`∗,u∗1, e

∗
1, . . . ,u

∗
n, e
∗
n), but ξ = ξ∗, then the adversary has generated a

collision for the hash function HK .
(c) (`,u1, e1, . . . ,un, en) 6= (`∗,u∗1, e

∗
1, . . . ,u

∗
n, e
∗
n), and ξ 6= ξ∗: the ciphertext should be accepted iff

vi = ux1+ξy1i,1 · ux2+ξy2i,2 · ux3+ξy3i,3 , for i = 1, . . . , n. To make it acceptable, if we denote g2 = gβ21 and

g3 = gβ31 , we indeed have

logg1 c1 = x1 +β3x3
logg1 d1 = y1 +β3y3
logg1 c2 = β2x2 +β3x3
logg1 d2 = β3y2 +β3y3

20

with in addition,

logg1 v
∗
1 = rx1 + sβ2x2 + tβ3x3 + rξ∗y1 + sξ∗β2y2 + tξ∗β3y3

logg1 v
∗
i = r∗i x1 + s∗iβ2x2 + (r∗i + s∗i)β3x3 + r∗i ξ

∗y1 + s∗i ξ
∗β2y2 + (r∗i + s∗i)ξ

∗β3y3

= r∗i logg1 c1 + s∗i logg1 c2 + ξ∗r∗i logg1 d1 + ξ∗s∗i logg1 c2 for i = 2, . . . , n

logg1 γ
∗
i = a∗ix1 + b∗iβ2x2 + (a∗i + b∗i)β3x3 + a∗i ξ

∗y1 + b∗i ξ
∗β2y2 + (a∗i + b∗i)ξ

∗β3y3

= a∗i logg1 c1 + b∗i logg1 c2 + ξ∗a∗i logg1 d1 + ξ∗b∗i logg1 c2 for i = 1, . . . , n

The 2n− 1 last relations are thus linearly dependent with the 4 above relations, hence remains the
useful relations

logg1 c1 = x1 +β3x3 (1)

logg1 d1 = y1 +β3y3 (2)

logg1 c2 = β2x2 +β3x3 (3)

logg1 d2 = β2y2 +β3y3 (4)

logg1 v
∗
1 = rx1 +sβ2x2 +tβ3x3 +rξ∗y1 +sξ∗β2y2 +tξ∗β3y3 (5)

One can note that for v∗1 to be predictable, because of the x1, x2 and y1, y2 components, we need
to have (5) = r (1) + s (3) + rξ∗ (2) + sξ∗ (4), and then t = r + s, which is not the case, hence v∗1
looks random: in this game, v∗1 is perfectly uniformly distributed in G.
Furthermore, for any vi in the decryption query, if ui = (gr

′
1 , g

s′
2 , g

t′
3) is not a linear triple, then it

should be such that

logg1 vi = r′x1 + s′β2x2 + t′β3x3 + r′ξy1 + s′ξβ2y2 + t′ξβ3y3.

Since the matrix

1 0 β3 0 0 0
0 0 0 1 0 β3
0 β2 β3 0 0 0
0 0 0 0 β2 β3
a bβ2 cβ3 aξ∗ bξ∗β2 cξ∗β3
r′ s′β2 t′β3 r′ξ s′ξβ2 t′ξβ3

 has determinant β22β
2
3(ξ∗ − ξ)(t− r − s)(t′ − r′ − s′) 6= 0,

then the correct value for vi is unpredictable: an invalid ciphertext will be accepted with probability
1/p.

2. Let us now consider the mask uz11 u
z2
2 u

z3
3 : its discrete logarithm in basis g1 is rz1+sβ2z2+tβ3z3, whereas

the informations about (z1, z2, z3) are h1 = gz11 g
z3
3 and h2 = gz22 g

z3
3 . The matrix1 0 β3

0 β2 β3
r sβ2 tβ3

 has determinant β2β3(t− r − s)(t′ − r′ − s′) 6= 0,

then the value of the mask is unpredictable: in this game, e∗1 is perfectly uniformly distributed in G.
Since the unique difference between the two games is the linear/random tuple, unless a collision is found
for HK (probability bounded by SucccollH (t)) and or an invalid ciphertext is accepted (probability bounded
by qd/p), then

Pr
2

[1← B] ≥ Pr
1

[1← B]− Advdlinp,G,g(t)− SucccollH (t)− qd
p
.

– In game G3, to encrypt the challenge vectors M b and N b, B does as above, except for C∗1 : for a random

t∗1
$← Zp, u∗1 = (g

r∗1
1 , g

s∗1
2 , g

t∗1
3), e∗1

$← G, and v∗1
$← G. As just explained, this is perfectly indistinguishable

with the previous game:

Pr
3

[1← B] = Pr
2

[1← B] ≥ (Advind−pd−ccan−DLCS (A)− 1)/2− Advdlinp,G,g(t)− SucccollH (t)− qd
p
.

21

– In game G4, to encrypt the challenge vectors M b and N b, B does as above, except for C∗: for a random

vector t∗
$← Znp , for i = 2, . . . , n: u∗i = (g

r∗i
1 , g

s∗i
2 , g

t∗i
3), e∗i

$← G, and v∗i
$← G. Thus replacing sequentially the

C∗i ’s by random ones, as we’ve just done, we obtain

Pr
4

[1← B] ≤ Pr
3

[1← B]− (n− 1)

(
Advdlinp,G,g(t)− SucccollH (t)− qd

p

)
.

– In game G5, to encrypt the challenge vectors M b and N b, B does as above, except for C′∗: for a random

vector c∗
$← Znp , for i = 1, . . . , n: α∗1 = (g

a∗i
1 , g

b∗i
2 , g

c∗i
3), β∗i

$← G, and γ∗i
$← G. Thus replacing sequentially the

C′∗i ’s by random ones, as we’ve just done, we obtain

Pr
5

[1← B] ≤ Pr
4

[1← B]− n
(
Advdlinp,G,g(t)− SucccollH (t)− qd

p

)
.

In this last game, it is clear that Pr5[1← B] = 1/2, since (M b,N b) is not used anymore:

Advind−pd−ccan−DLCS (A)− 1

2
− 2n×

(
Advdlinp,G,g(t)− SucccollH (t)− qd

p

)
≤ 1

2
,

which concludes the proof. ut

B.3 Double Linear Cramer-Shoup (DLCS) Commitment

Recently, Lindell [Lin11] proposed a highly efficient UC commitment. Our commitment strongly relies on it,
but does not need to be UC secure. We will then show that the decommitment check can be done in an implicit
way with an appropriate smooth projective hash function. Basically, the technique consists in encrypting M in
C = (u, e, v) = LCS(`,M ; r, s), also getting ξ = HK(`,u, e), and then encrypting 1G in C′ = LCS∗(`, 1G, ξ; a, b),
with the same ξ. For a given challenge ε, we can see C×C′ε = LCS∗(`,M, ξ; r+εa, s+εb), where the computations
are done component-wise, as an encryption of M , still using the same above ξ. Note that Lindell [Lin11] used
Cε×C′, but our choice seems more natural, since we essentially re-randomize the initial encryption C, but we have
to take care of choosing ε 6= 0. It makes use of an equivocable commitment: the Pedersen commitment [Ped92].

– Setup(1k) generates a group G of order p, with two independent generators g and ζ;

– Commit(m; r), for a message m
$← Zp and random coins r

$← Zp, produces a commitment c = gmζr;

– Decommit(c,m; r) outputs m and r, which opens c into m, with checking ability: c ?= gmζr.

This commitment is computationally binding under the discrete logarithm assumption: two different openings
(m, r) and (m′, r′) for a commitment c, leads to the discrete logarithm of ζ in basis g, that is equal to (m′ −
m) · (r− r′)−1 mod p. Granted this logarithm as additional information from the setup, one can equivocate any
dummy commitment.

Description. Our n-message vector commitment, which includes labels, is depicted on Figure 6, where the
computation between vectors are component-wise. We assume we commit vectors of group elements, but they
can come from the reversible transformation G. Note that for this commitment scheme, we can use ε = (ε, . . . , ε).
For the version with SPHF implicit verification, according to the language, one can have to use independent
components ε

$← (Z∗p)n.

Analysis. Let us briefly show the properties of this commitment:

– Hiding property: M is committed in the Pedersen commitment C′′, that does not leak any information,
and in the n − LCS encryption C, that is indistinguishable, even with access to the decryption oracle
(extractability). This also implies non-malleability.

– Binding property: M , after having been hashed, is committed in the Pedersen commitment C′′, that is
computationally binding.

22

– Setup(1k): A group G of prime order p, with ten independent generators (g1, g2, g3, h1, h2, c1, c2, d1, d2, ζ)
$← G10, a

collision-resistant hash function HK , and possibly an additional reversible mapping G from {0, 1}k to G to commit
to bit-strings. One can denote ek = (c1, c2, d1, d1, h1, h2,HK);

– Commit(`,M ; r, s,a, b, t): for (r, s,a, b, t)
$← Z4n+1

p

(C, C′)← n− DLCS(`, ek,M , (1G)n; r, s,a, b)
χ = HK(M , C′), C′′ = gt1ζ

χ C, C′′−−−−−−−−−−−−−−−→
ε←−−−−−−−−−−−−−−− ε

$← Z∗p, ε← (ε, . . . , ε)
∏
i εi

?

6= 0 mod p
z = (r + ε× a mod p, s + ε× b mod p)
Erase(r, s,a, b)

– Decommit(`, C, C′, ε): C′, t,M , z−−−−−−−−−−−−−−−→ compute ξ from C
χ = HK(M , C′), C′′ ?= gt1ζ

χ

C × C′ε ?= n− LCS∗(`,M , ξ; zr, zs)

Figure 6. n− DLCS Commitment Scheme

– Extractability: using the decryption key of the LCS encryption scheme, one can extract M from C. Later,
one has to open the ciphertext CC′ε with M ′, which can be different from M in the case that C′ contains
N 6= (1G)n. But then M ′ = M ×Nε, that is unpredictable at the commit time of C′′. With probability
at most 1/p, one can open the commitment with a value M ′ different from M , if this value M ′ has been
correctly anticipated in C′′.

– Equivocability: if one wants to open with M ′, one can compute N = (M ′/M)1/ε, encrypt N in C′ =
n− LCS∗(`,N , ξ;a, b), and update χ and t, using the Pedersen trapdoor for equivocability.

To allow an implicit verification with SPHF, one omits to send M and z, but make an implicit proof of their
existence. Therefore, M cannot be committed/verified in C′′, which has an impact on the binding property: C
and C′′ are not binded to a specific M , even in a computational way. However, as said above, if C′′ contains a
ciphertext C′ of N 6= (1G)n, the actual committed value will depend on ε: M ′ = MNε has its i-component,

where Ni 6= 1G, uniformly distributed in G when ε is uniformly distributed in Z∗p. In addition, if ε
$← (Z∗p)n, all

these i-component where Ni 6= 1G are randomly and independently distributed in G. Then, if the committed
value has to satisfy a specific relation, with very few solutions, M ′ will unlikely satisfy it.

C Smooth Projective Hash Functions on More Complex Languages

C.1 Basic Relations

We first consider Diffie-Hellman pairs and linear tuples and show we can make proof of membership without
using any pairing.

DDH pairs. Let us assume a user is given two elements g, h and then wants to send G = ga, H = ha for a
chosen a and prove that the pair (G,H) is well-formed with respect to (g, h). We thus consider the language of
Diffie Hellman tuples (g, h,G = ga, H = ha), with a as a witness.

As done in [CS98], we define a projection key hp = gx1hx2 by picking two random scalars x1, x2
$← Zp,

which define the secret hashing key hk = (x1, x2). One can then compute the hash value in two different ways:
ProjHash(hp, (g, h,G,H), a) def= hpa = (gax1hax2) = Gx1Hx2 def= Hash(hk, (g, h,G,H)).

Such SPHF is smooth: this can be seen by proceeding like in the Cramer-Shoup proof. Given hp = gα,
h = gβ, G = ga and H = ha

′
, the hash value is gγ that satisfies:(

α
γ

)
=

(
1 β
a βa′

)
·
(
x1
x2

)
The determinant of this matrix is ∆ = β(a′ − a), that is zero if and only if we do have a valid Diffie-Hellman
tuple. Otherwise, from hp, γ is perfectly hidden, from an information theoretical point of view, and so is
Hash(hk, (g, h,G,H)) too.

23

DLin tuples. Let us consider three generators u, v, w, and a tuple U = ur, V = vs,W = wt one wants
to prove be linear (i.e. t = r + s). We first define two projection keys hp1 = ux1wx3 , hp2 = vx2wx3 , for
random scalars that define the secret hashing key hk = (x1, x2, x3). One can then compute the hash value in
two different ways: ProjHash(hp1, hp2, (u, v, w, U, V,W), r, s) def= hpr1hp

s
2 = (urx1vsx2wx3(r+s)) = Ux1V x2W x3 def=

Hash(hk, (u, v, w, U, V,W)).

Once again this SPHF can be shown to be smooth: given hp1 = uα, hp2 = uβ, v = uγ , w = uδ, the hash
value is uλ that satisfies: αβ

λ

 =

1 0 δ
0 γ δ
r γs δt

 ·
x1x2
x3


The determinant of this matrix is ∆ = γδ(t− s− r), that is zero if and only if we do have a valid linear tuple.

C.2 Smooth Projective Hashing on Commitments

We now show that our commitments LCS or DLCS′ are well-suited for a use together with smooth projective hash
functions: instead of publishing z at the decommit phase, in order to check whether C×C′ε ?= LCS∗(`,M, ξ; zr, zs)
(with ε = 0 in the LCS non-equivocable case, or with ε 6= 0 in the DLCS′ case), one uses a smooth projective hash
function to “implicitly” prove the existence of a witness that the commitment actually contains the claimed (or
assumed) value M . We will thereafter be able to use this primitive in Language-Authenticated Key Exchange,
for complex languages.

Smooth projective hash functions. We thus have a commitment, either C or C · C′ε, but we use in both
cases the notation C, and want to check whether there exists z = (zr, zs) such that

C = LCS∗(`,M, ξ; zr, zs) = (u = (gzr1 , g
zs
2 , g

zr+zs
3), e = M · hzr1 h

zs
2 , v = vzr1 v

zs
2),

where we denote v1 = c1d
ξ
1 and v2 = c2d

ξ
2. We note here that all the bases g1, g2, g3, h1, h2 but also v1, v2 are

known as soon as ξ is known (the C part of the DLCS′ commitment). One then generates hk = (η, θ, κ, λ, µ)
$← Z5

p,

and derives the projection key that depends on ξ only: hp = (hp1 = gη1g
κ
3h

λ
1v

µ
1 , hp2 = gθ2g

κ
3h

λ
2v

µ
2). Then, one can

compute the hash value:

H = Hash(hk,M, C) def= uη1u
θ
2u
κ
3(e/M)λvµ = hpzr1 hpzs2

def= ProjHash(hp,M, C; zr, zs) = H ′.

Security properties. Let us claim and prove the security properties:

Theorem 8. Under the DLin assumption, the above smooth projective hash function is both smooth and pseudo-
random:

– Smoothness: Advsmooth
Π = 0;

– Pseudo-Randomness: AdvprΠ(t) ≤ Advdlinp,G,g(t).

Proof. For the correctness, one can easily check that if C contains M = M ′, then H = H ′:

H = uη1u
θ
2u
κ
3(e/M)λvµ = (gzr1)η(gzs2)θ(gzr+zs3)κ(hzr1 h

zs
2 M

′/M)λ(vzr1 v
zs
2)µ

= (gη1g
κ
3h

λ
1v

µ
1)zr × (gθ2g

κ
3h

λ
2v

µ
2)zs × (M ′/M)λ = hpzr1 hpzs2 × (M ′/M)λ = H ′ × (M/M ′)λ

Smoothness: if C is not a correct encryption of M , then H is unpredictable: let us denote M ′ and z′s such that

C = (u = (gzr1 , g
zs
2 , g

zt
3), e = M ′hzr1 h

zs
2 , v = vzr1 v

z′s
2). Then, if we denote g2 = gβ21 and g3 = gβ31 , and h1 = gρ11 and

h2 = gρ21 , but also v1 = gδ11 and v2 = gδ21 , and ∆ = logg1(M ′/M):

H = gηzr1 gβ2θzs1 gβ3κzt1 (M ′/M)λ(gρ1zr+ρ2zs1)λ(vzr1 v
z′s
2)µ

logg1 H = ηzr + β2θzs + β3κzt + λ(ρ1zr + ρ2zs) + µ(δ1z+δ2z
′
s) + λ∆

24

The information leaked by the projected key is logg1 hp1 = η+β3κ+ρ1λ+δ1µ and logg1 hp2 = β2θ+β3κ+ρ2λ+δ2µ,
which leads to the matrix  1 0 β3 ρ1 δ1

0 β2 β3 ρ2 δ2
zr β2zs β3zt ∆+ ρ1zr + ρ2zs δ1zr + δ2z

′
s


One remarks that if zt 6= zr + zs mod p, then the three rows are not linearly dependent even considering the
3 first components only, and then H is unpredictable. Hence, we can assume that zt = zr + zs mod p. The
third row must thus be the first multiplied by zr plus the second multiplied by zs: ρ2zs = ∆+ ρ2zs mod p and
zs = z′s mod p, which implies z′s = s and ∆ = 0, otherwise, H remains unpredictable.

As a consequence, if C is not a correct encryption of W , H is perfectly unpredictable in G:

{(hp, H), hk = (η, θ, κ, λ, µ)
$← Z5

p, hp = (hp1 = gη1g
κ
3h

λ
1v

µ
1 , hp2 = gθ2g

κ
3h

λ
2v

µ
2), H ← Hash(hk,M, C)}

≈s {(hp, H), hk = (η, θ, κ, λ, µ)
$← Z5

p, hp = (hp1 = gη1g
κ
3h

λ
1v

µ
1 , hp2 = gθ2g

κ
3h

λ
2v

µ
2), H

$← G}.

Pseudo-Randomness: we’ve just shown that if C is not a correct encryption of M , then H is statistically
unpredictable. Let us be given a triple (g1, g2, g3) together with another triple u = (u1 = ga1 , u2 = gb2, u3 = gc3).
We choose random exponents (x1, x2, x3, y1, y2, y3, z1, z2, z3), and for i = 1, 2, we set ci = gxii g

x3
3 , di = gyii g

y3
3 ,

and hi = gzii g
z3
3 . We generate C = (u, e = M × uz11 u

z2
2 u

z3
3 , v = ux1+ξy11 ux2+ξy22 ux3+ξy33). If c = a + b mod p (i.e.,

u is a linear tuple in basis g), then C is a valid encryption of M , otherwise this is not, and we can apply the
smoothness property:

AdvprΠ(t) ≤ Advsmooth
Π + Advdlinp,G,g(t) ≤ Advdlinp,G,g(t).

ut

C.3 Single Equation

Let us assume that we have Yi committed in G, in ci, for i = 1, . . . ,m and Zi committed in GT , in Di, for
i = m+ 1, . . . , n, and we want to show they simultaneously satisfy(

m∏
i=1

e(Yi,Ai)

)
·

(
n∏

i=m+1

Zzi
i

)
= B

where Ai ∈ G, B ∈ GT , and zi ∈ Zp are public. As already said, the commitment can either be the LCS or the
DLCS′ version, but they both come up to a ciphertext C with the appropriate random coins z:

ci = (ui = (g
zri
1 , g

zsi
2 , g

zri+zsi
3), ei = h

zri
1 h

zsi
2 · Yi, vi = (c1d

ξ
1)
zri · (c2dξ2)zsi) for i = 1, . . . ,m

which can be transposed into GT :

Ci = (Ui = (G
zri
i,1 , G

zsi
i,2 , G

zri+zsi
i,3), Ei = H

zri
i,1 H

zsi
i,2 · Zi, Vi = (Ci,1D

ξ
i,1)

zri · (Ci,2Dξ
i,2)

zsi) for i = 1, . . . ,m

where, for j = 1, 2, 3, Gi,j = e(gj ,Ai) and for j = 1, 2, Hi,j = e(hj ,Ai), Ci,j = e(cj ,Ai), Di,j = e(dj ,Ai),
but also, Zi = e(Yi,Ai), and

Di = (Ui = (G
zri
i,1 , G

zsi
i,2 , G

zri+zsi
i,3), Ei = H

zri
i,1 H

zsi
i,2 · Zi, Vi = (Ci,1D

ξ
i,1)

zri · (Ci,2Dξ
i,2)

zsi) for i = m+ 1, . . . , n

where, for j = 1, 2, 3, Gi,j = e(gj , g) and for j = 1, 2, Hi,j = e(hj , g), Ci,j = e(cj , g), Di,j = e(dj , g),

where ξ = HK(u1, . . . ,um,Um+1, . . . ,Un, e1, . . . , em, Em+1, . . . , En): G-elements are encrypted under ek =
(g = (g1, g2, g3),h = (h1, h2), c = (c1, d1),d = (c2, d2)), and GT -element are encrypted under EKi = (Gi =
(Gi,1, Gi,2, Gi,3),H i = (Hi,1, Hi,2),Ci = (Ci,1, Ci,2),Di = (Di,1, Di,2)). Note that an additional label ` can be
included in the computation of ξ.

For the hashing keys, one picks scalars (λ, (ηi, θi, κi, µi)i=1,...,n)
$← Z4n+1

p , and sets hki = (ηi, θi, κi, λ, µi). One

then computes the projection keys as hpi = (gηi1 g
κi
3 h

λ
1(c1d

ξ
1)
µi , gθi2 g

κi
3 h

λ
2(c2d

ξ
2)
µi) ∈ G2. The associated projection

keys in GT are HPi = (e(hpi,1,Ai), e(hpi,2,Ai)), for i = 1, . . . , n, where Ai = gzi for i = m+ 1, . . . , n.

25

The hash value is

H =

(∏
i

Uηii,1 · U
θi
i,2 · U

κi
i,3 · E

λ
i · V

µi
i

)
× B−λ

=

(∏
i

HPrii,1HP
si
i,2Z

λ
i

)
× B−λ =

(∏
i

HPrii,1HP
si
i,2

)((
m∏
i=1

e(Yi,Ai)

)(
n∏

i=m+1

Zi

)
/B

)λ

=
∏
i

HP
zri
i,1HP

zsi
i,2 =

(
m∏
i=1

e(hp
zri
i,1 ,Ai) · e(hp

zsi
i,2 ,Ai)

)
×

(
e(

n∏
i=m+1

hp
zri
i,1 , g

zi) · e(
n∏

i=m+1

hp
zsi
i,2 , g

zi)

)

which can be computed either from the commitments and the hashing keys, or from the projection keys and
the witnesses. We prove below the smoothness, but first extend it even more to several equations.

C.4 Multiple Equations

Let us assume that we have Yi committed in G, in ci, for i = 1, . . . ,m and Zi committed in GT , in Di, for
i = m+ 1, . . . , n, and we want to show they simultaneously satisfy∏

i∈Ak

e(Yi,Ak,i)

 ·
∏
i∈Bk

Zzk,i
i

 = Bk, for k = 1, . . . , t.

where Ak,i ∈ G, Bk ∈ GT , and zk,i ∈ Zp, as well as Ak ⊆ {1, . . . ,m} and Bk ⊆ {m + 1, . . . , n} are public. As
above, from the commitments, one derives the global ξ, which can also involves the label `, and one can also
derive the commitments in GT , Ck,i that correspond to the encryption of Zk,i = e(Yi,Ak,i) under the keys
EKk,i = (Gk,i = (Gk,i,1, Gk,i,2, Gk,i,3),Hk,i = (Hk,i,1, Hk,i,2),Ck,i = (Ck,i,1, Ck,i,2),Dk,i = (Dk,i,1, Dk,i,2)), where
the capital letters Xk,i,j correspond to the lower-case letters xj paired with Ak,i.

For the hashing keys, one picks scalars (λ, {ηi, θi, κi, µi}i=1,...,n)
$← Z4n+1

p , {εk}k=1,...,t
$← Ztp and sets hk =

({hki = (ηi, θi, κi, λ, µi)}i=1,...,n, {εk}k=1,...,t). We insist on the fact that the εk’s have to be sent after the
commitments have been sent, or at least committed to (such as C and C′′ which prevent from any modification).

One then computes the projection keys as hpi = (gηi1 g
κi
3 h

λ
1(c1d

ξ
1)
µi , gθi2 g

κi
3 h

λ
2(c2d

ξ
2)
µi) ∈ G2, together with εk.

The associated projection keys in GT are HPk,i = (e(hpi,1,Ak,i), e(hpi,2,Ak,i)), for t = 1, . . . , t and i = 1, . . . , n,
where Ak,i = gzk,i for i = m + 1, . . . , n, together with εk. The hash function and the projective hash function
are defined as:

H =
∏
k

 ∏
i∈Ak∪Bk

Uηik,i,1 · U
θi
k,i,2 · U

κi
k,i,3 · E

λ
k,i · V

µi
k,i

× B−λk
εk

=
∏
k

 ∏
i∈Ak∪Bk

HP
zri
k,i,1 · HP

zsi
k,i,2

εk

×
∏
k

∏
i∈Ak

e(Yi,Ak,i)×
∏
i∈Bk

Zzk,i
i × B−1k

λεk

H ′ =
∏
k

 ∏
i∈Ak∪Bk

HP
zri
k,i,1 · HP

zsi
k,i,2

εk

which can be computed either from the commitments and the hashing keys, or from the projection keys and
the witnesses. They lead to the same values H ′ = H if

– for every k,
∏
i∈Ak e(Yi,Ak,i) ×

∏
i∈Bk Z

zk,i
i = Bk, which means that all the equations are simultaneously

satisfied;

– λ = 0, which is quite unlikely;

–
∏
k∆

εk
k = 1, where for every k, ∆k =

∏
i∈Ak e(Yi,Ak,i)×

∏
i∈Bk Z

zk,i
i /Bk, which is also quite unlikely since

the ∆k’s are fixed before the εk’s are known.

26

C.5 Security Analysis

Smoothness. In this section, first we prove the smoothness of the SPHF built right before. For k = 1, this proves
the smoothness of the SPHF built to handle variables in one linear pairing equation. The list of commitments
C = (C1, . . . , Cn), which possibly results from the multiplication by the companion ciphertext when using the
equivocable variant, should be considered in the language if and only if:

– the commitments are all valid Linear Cramer-Shoup ciphertexts (in either G or GT), with the common and
fixed ξ;

– the plaintexts satisfy the linear pairing product equations.

Let us assume that one of the commitments is not a valid ciphertext, this means that for some index i ∈
{1, . . . , n}, the ciphertext (Ui, Ei, Vi) in GT satisfies (Ui = (Gri1 , G

si
2 , G

ti
3), Vi) with either ti 6= ri + si or Vi 6=

(C1D
ξ
1)ri · (C2D

ξ
2)si . Then, the contribution of this ciphertext in the hash value is (Uηii,1 · U

θi
i,2 · U

κi
i,3 ·Eλi · V

µi
i)ε

′
i ,

where ε′i =
∑

k,i∈Ak∪Bk εk, knowing the projection keys that reveal, at most,

logg1 hpi,1 = ηi + x3 × κi + x4 × λ+ (y1 + ξy3)× µi logg1 hpi,2 = x2 × θi + x3 × κi + x5 × λ+ (y2 + ξy4)× µi,

where g2 = gx21 g3 = gx31 h1 = gx41 h2 = gx51 c1 = gy11 c2 = gy21 d1 = gy31 d2 = gy41 . This contribution is

thus (Griηi+x2siθi+x3tiκi+ziµi1 ×Eλi)ε
′
i , where Vi = Gzi1 . But even if all the discrete logarithms were known, and also

λ, one has to guess riηi+x2siθi+x3tiκi+ziµi, given ηi+x3×κi+(y1+ξy3)×µi and x2×θi+x3×κi+(y2+ξy4)×µi: 1 0 x3 (y1 + ξy3)
0 x2 x3 (y2 + ξy4)
ri x2si x3ti zi

 .

The first 3-column matrix has determinant is x2x3(ti − (ri + si)), that is non-zero as soon as ti 6= ri + si. In
this case, there is no way to guess the correct value better than by chance: 1/p. If ti = (ri + si), the third
line is linearly dependent with the 2 first, if and only if zi = ri(y1 + ξy3) + si(y2 + ξy4). Otherwise, one has
no better way to guess the value than by chance either. Hence the smoothness of this hash function when one
commitment is not valid.

About the equation validity, the Ei’s of the involved ciphertexts contain plaintexts Yi or Zi, and contribute
to the hash value: from the projection keys, the k-th equation contributes to

Hk =

∏
i∈Ak

HPrik,i,1 · HP
si
k,i,2 ×

∏
i∈Bk

(
HPrii,1 · HP

si
i,2

)zk,iεk

×

∏
i∈Ak

e(Yi,Ak,i)×
∏
i∈Bk

Zzk,i
i × B−1k

λεk

Let us denote αk =
∏
i∈Ak e(Yi,Ak,i)×

∏
i∈Bk Z

zk,i
i ×B−1k , then the uncertainty about H is (

∏
k α

εk
k)λ. As soon

as one of the equations is not satisfied, one of the αk is different from 1. Since the εk’s are unknown at the
commitment time, one cannot make the αk to compensate themselves, but by chance: if one equation is not
satisfied, the probability that

∏
k α

εk
k = 1 is 1/p. Except this negligible case, (

∏
k α

εk
k)λ is totally unpredictable

since λ is random.

Pseudo-randomness. The pseudo-randomness can be proven under the DLin assumption: with invalid ci-
phertexts, the smoothness guarantees unpredictability; without the witnesses, one cannot distinguish a valid
ciphertext from an invalid ciphertext.

C.6 Asymmetric Setting

Our approach has been presented in the symmetric setting (at least when pairing are required). We can do
the same in asymmetric bilinear groups, with e : G1 ×G2 → GT , and even more efficiently, using the Cramer-
Shoup encryption scheme, and the analogous n-message commitment scheme, which security relies on the DDH
assumption in either G1 or G2. In this setting, our methodology can handle linear pairing product equations:(

m∏
i=1

e(Xi,Bi)

)
·

 n∏
j=1

e(Aj ,Yj)

 ·(o∏
k=1

Zzk
k

)
= gT ,

where Aj ,Bi, gT are public values, in G1, G2 and GT respectively, and Xi,Yj ,Zk are the unknown values,
committed in G1, G2 and GT respectively.

27

D Security of the LAKE Protocol: Proof of Theorem 1

For the sake of simplicity, we give in Figure 7 an explicit version of the protocol described in Figure 4. We
omit the additional verification that all the committed values are in the correct subsets P and S, since in the
proof below we will always easily guarantee this membership. The proof heavily relies on the properties of the
commitments and smooth projective hash functions given in Sections 3, 4 and Appendix B.

Initiator Pi Receiver Pj

(I0) (VKi, SKi)← KeyGen() (R0) (VKj ,SKj)← KeyGen()
pre-flow

(VKi, pubi)−−−−−−−−−−−−−−−→→ pub ←−−−−−−−−−−−−−−− → pub
(VKj , pubj)

`i = (`, pub,VKi,VKj) `j = (`, pub,VKj ,VKi)

Pi owns Wi ∈ L(pub, privi) Pj owns Wj ∈ L(pub, privj)

(I1) Li = L(pub, privi), L
′
j = L(pub, priv′j)

Randomizes Wi into Vi
(Ci, C′i) = EqExtCommit(`i, (privi, priv

′
j , Vi); (ri, r

′
i))

C′′i = EqCommit((Ci, C′i), ti)

flow-one

(Ci, C′′i)
−−−−−−−−−−−−−−−→

(R2) L′i = L(pub, priv′i), Lj = L(pub, privj)
Randomizes Wj into Vj
Comj = Cj = ExtCommit(`j , (privj , priv

′
i, Vj); rj)

ε
$←, hki $←, hpi = ProjKG(hki, L

′
i, Ci)flow-two

(Cj , ε, hpi, σj)←−−−−−−−−−−−−−−− σj = Sign(SKj , (`j , Cj , Ci, C′′i , ε, hpi))
(I3) Abort if

not Verif(VKj , (`j , Cj , Ci, C′′i , ε, hpi), σj)
Comi = Ci × C′i

ε
, zi = ri + εr′i

Comj = Cj
hkj

$←, hpj = ProjKG(hkj , L
′
j , Cj)

σi = Sign(SKi, (`i, Ci, C′i, Cj , ε, hpi, hpj))
If Wi /∈ Li sets ski random. Otherwise,
Hi = Hash(hkj , L

′
j , `j ,Comj)

H ′j = ProjHash(hpi, Li, `i,Comi; zi)
ski = Hi ×H ′j
Sets the session as accepted

and uses ski as a shared key

flow-three

(C′i, ti, hpj , σi)−−−−−−−−−−−−−−−→
(R4) Abort if

not Verif(VKi, (`i, Ci, C′i, Cj , ε, hpi, hpj), σi)
or not correct opening ti for C′i in C′′i

If Wj /∈ Lj sets skj random.
Otherwise, does the following:

Comi = Ci × C′i
ε

Hj = Hash(hki, L
′
i, `i,Comi)

H ′i = ProjHash(hpj , Lj , `j ,Comj ; rj)
skj = H ′i ×Hj
Sets the session as accepted

and uses skj as a shared key

Figure 7. Description of the language authenticated key exchange protocol for players (Pi, ssid), with index i, message Wi ∈
Li = L(pub, privi) and expected language for Pj L

′
j = L(pub, priv′j) and (Pj , ssid), with index j, message Wj ∈ Lj = L(pub, privj)

and expected language for Pi L
′
i = L(pub, priv′i). The label is ` = (sid, ssid, Pi, Pj). The random values used in the commitments

(witnesses) are all included in ri, r
′
i and rj .

D.1 Notations

The protocol is played between an initiator, denoted to as Pi, and a receiver, Pj . Each player Pk owns a public
part pubk of a language. Those two public parts pubi and pubj will combine to create the common public part pub

28

of the language used in the protocol. Player Pk also owns a private part privk and a word Wk ∈ L(pub, privk)
1.

It rerandomizes this word Wk into a word Vk still in L(pub, privk): we assume the languages used to be self-
randomizable, which allows such a rerandomization.

We need three different types of commitments for this protocol:

– EqCommit is an equivocable commitment, such as Pedersen [Ped92], used to engage Pi on its further
committed values Ci and C′i with randomness ti: C′′i = EqCommit((Ci, C′i); ti);

– EqExtCommit is a labeled equivocable and extractable commitment, used by Pi to commit to its private
values (used in the smooth projective hash function) and asking Pj to send a challenge value ε.
It is based on a double encryption scheme (Enci and Enc′i) that is partial-decryption chosen-ciphertext
secure (the latter one being strongly related to the former), verifying the following properties, if we denote
by + and × two group laws adapted to the schemes:

Ci = Enci(`i,mi; ri)
C′i = Enc′i(`i, ni; r

′
i)

Comi = Enc′i(`i,mi × nεi ; ri + εr′i) = CiC′i
ε

In the particular cases of (multi) Double-Cramer-Shoup or Double-Linear-Cramer-Shoup, Ci is a real ci-
phertext with the correct ξ value, to guarantee non-malleability, but C′i and Comi use the ξ value of Ci. This
is the reason why projection keys can be computed as soon as Ci is known.

– ExtCommit is a labeled extractable commitment, used by Pj to commit to its private values (used in the
smooth projective hash function). It is based on a chosen-ciphertext secure encryption scheme Encj which
can be equal to Enci or different: Comj = Cj = ExtCommit(`j ,mj ; rj) = Encj(`j ,mj ; rj)

Again, note that the projected keys of the smooth projective hash functions depend on Ci and Cj only, and do
not need Comi, justifying it can be computed by Pj in (R2), before having actually received C′i and thus being
able to compute Comi.

D.2 Sketch of Proof

The proof follows that of [CHK+05] and [ACP09], but with a different approach since we want to prove that
the best attack the adversary can perform is to play as an honest player would do with a chosen credential
(pubi, privi, priv

′
j ,Wi) —when trying to impersonate Pi— or (pubj , privj , priv

′
i,Wj) —when trying to impersonate

Pj—. In order to prove Theorem 1, we need to construct, for any real-world adversary A (controlling some
dishonest parties), an ideal-world adversary S (interacting with dummy parties and the split functionality
sFlake) such that no environment Z can distinguish between an execution with A in the real world and S in
the ideal world with non-negligible probability.

The split functionality sFlake is defined in Section 5, following [BCL+05]. In particular, we assume that
at the beginning of the protocol, S receives from it the contribution pubi of Pi to the public language pub as
answer to the Init query sent by the environment on behalf of this player. The preflow phase will determine the
whole public language pub.

When initialized with security parameter k, the simulator first generates the CRS for the commitment
(public parameters but also extraction and equivocation trapdoors), as well as the possibly required trapdoors
to be able to generate, for any pub, a word inside or outside the language L(pub, priv) when priv is known. It
then initializes the real-world adversary A, giving it these values. The simulator then starts its interaction with
the environment Z, the functionality sFlake and its subroutine A.

Since we are in the static-corruption model, the adversary can only corrupt players before the execution of
the protocol. We assume players to be honest or not at the beginning, and they cannot be corrupted afterwards.
However, this does not prevent the adversary from modifying flows coming from the players. Indeed, since
we are in a weak authenticated setting, when a player acts dishonestly (even without being aware of it), it is
either corrupted, hence the adversary knows its private values and acts on its behalf; or the adversary tries to
impersonate it with chosen/guessed inputs. In both cases, we say the player isA-controlled. Following [CHK+05],

1 Since pub is unknown before the beginning of the protocol, one can imagine that Pk knows several words Wk, corresponding to
different possibilities for the public part pub` its partner can choose. Once pub is set, Pk chooses a word Wk ∈ L(pub, privk) among
them or aborts the protocol if this public value does not correspond to one it had in mind.

29

we say that a flow is oracle-generated if it was sent by an honest player and arrives without any alteration to
the player it was meant to. We say it is non-oracle-generated otherwise, that is if it was sent by a A-controlled
player (which means corrupted, or which flows have been modified by the adversary). The one-time signatures
are aimed at avoiding changes of players during a session: if pre-flow is oracle-generated for Pi, then flow-one
and flow-three cannot be non-oracle-generated without causing the protocol to fail because of the signature,
for which the adversary does not know the signing key. Similarly, for Pj . On the other hand, if pre-flow is non-
oracle-generated for Pi, then flow-one and flow-three cannot be oracle-generated without causing the protocol
to fail, since the honest player would sign wrong flows (the flows the player sent before the adversary alters
them). In both cases, the verifications of the signatures will fail at Steps (I3) or (R4) and Pi or Pj will abort.
One can note that if there is one flow only in the protocol for one player, its signature is not required, which is
the case for Pj when there is no pub to agree on at the beginning. But this is just an optimization that can be
occasionally applied, as for the PAKE protocol. We do not consider it here.

To deal with both cases of A-controlled players (either corrupted or impersonated by the adversary), we use
the Split Functionality model (see Section 2). We thus add a pre-flow which will help us know which players
are honest and which ones are A-controlled. If one player is honest and the other one corrupted, the adversary
will send the pre-flow on behalf of the latter, and the simulator will have to send the pre-flow on behalf of the
former. But in the case where both players are honest at the beginning of the protocol, both pre-flow will have
to be sent by S on behalf of these players and the adversary can then decide to modify one of these flows. This
models the fact that the adversary can decide to split a session between Pi and Pj by answering itself to Pi, and
thus trying to impersonate Pj with respect to Pi, and doing the same with Pj . Then, the Split Functionality
model ensures that two independent sessions are created (with sub-session identifiers). We can thus study these
sessions independently, which means that we can assume, right after the pre-flow, that either a player is honest
if its pre-flow is oracle-generated, or A-controlled if the pre-flow is non-oracle-generated. Since we want to show
that the best possible attack for the adversary (by controlling a player) consists in playing honestly with a trial
credential, we have to show that the view of the environment is unchanged if we simulate this dishonest player
as an honest player with respect to ideal functionality. The simulator then has to transform its flows into queries
to the Ideal Functionality sFlake, and namely the NewSession-query. Still, the A-controlled player is not honest,
and can have a bad behavior when sending the real-life flows, but then either it has no strong impact, and it is
similar to an honest behavior, or it will make the protocol fail: we cannot avoid the adversary to make denial
of service attack, and the adversary will learn nothing.

As explained in [BCL+05] and [ACGP11], where the simulator actually had access to a TestPwd query to the
functionality, it is equivalent to grant the adversary the right to test a password (here a credential) for Pi while
trying to play on behalf of Pj (i.e., use a TestPwd query) or to use the split functionality model and generate
the NewSession queries corresponding to the A-controlled players and see how the protocol terminates, since it
corresponds to a trial of one credential by the adversary (one-line dictionary attack).

The proof will thus consist in generating ideal queries (and namely the NewSession) when receiving non-
oracle-generated flows from A-controlled players, and generating real messages for the honest players (whose
NewSession queries will be received from the environment). This will be done in a indistinguishable way for the
environment.

We assume from now on that we know in which case we are (i.e.how many players are A-controlled), and
the pub part is fixed. We then describe the simulator for each of these cases, while it has generated the pre-flow
for the honest players by generating (VK,SK) ← KeyGen(), and thus knows the signing keys. We denote by
Li = L(pub, privi) the language used by Pi, and by L′j = L(pub, priv′j) the language that Pi expects Pj to use. We
use the same notations in the reverse direction. As explained in Section 1, recall that the languages considered
depend on two possibly different relations: Li = LRi(pub, privi) and Lj = LRj (pub, privj), but we omit them for
the sake of clarity. Note that the simulator will use the NewKey query to learn whether the protocol is a success
or a failure (in case a player is A-controlled). This will enable it to check whether the LAKE should fulfill, that
is, whether the two users play with compatible words and languages, i.e.. priv′i = privi, priv

′
j = privj , Wi ∈ Li

and Wj ∈ Lj . For the most part, the interaction is implemented by the simulator S just following the protocol
on behalf of all the honest players.

30

D.3 Description of the Simulators

Initialization and Simulation of pre-flow. This is the beginning of the simulation of the protocol, where
S has to send the message pre-flow on behalf of each non-corrupted player2.

Step (I0). When receiving the first (Init : ssid, Pi, Pj , pubi) from sFlake as answer to the Init query sent by
the environment on behalf of Pi, S starts simulating the new session of the protocol for party Pi, peer Pj ,
session identifier ssid. S chooses a key pair (SKi,VKi) for a one-time signature scheme and generates a pre-flow
message with the values (VKi, pubi). It gives this message to A on behalf of (Pi, ssid).

Step (R0). When receiving the second (Init : ssid, Pj , Pi, pubj) from sFlake as answer to the Init query sent
by the environment on behalf of Pj , S starts simulating the new session of the protocol for party Pj , peer Pi,
session identifier ssid. S chooses a key pair (SKj ,VKj) for a one-time signature scheme and generates a pre-flow
message with the values (VKj , pubj). It gives this message to A on behalf of (Pj , ssid).

Splitting the Players. As just said, thanks to the Split Functionality model, according to which flows were
transmitted or altered by A, we know from the pre-flow which player(s) is (are) honest and which player(s)
is (are) A-controlled, and the public part pub. We can consider each case independently after the initial split,
during which S generated the signing keys of the honest players. Thanks to the signature in the last flows for
each player, if the adversary tries to take control on behalf of a honest user for some part of the execution
(without learning the internal states, since we exclude adaptive corruptions), the verification will fail. Then we
can assume that the sent flows are the received flows.

One can note that the prior agreement on pub allows to simulate Pi before having received any information
from Pj , and also without knowing whether the protocol should be a success or not. Without such an agreement,
the simulator would not know which value to use for pub whereas it cannot change its mind later, since it is
sent in clear. Everything else is committed: either in an equivocable way on behalf of Pi so that we can change
it later when we know the real status of the session; or in a non-equivocable way on behalf of Pj since we can
check the status of the session before making this commitment. Of course, both commitments are extractable.
In the whole proof, in case the extraction fails, the simulator acts as if the simulation should fail. Indeed, the
language of the smooth projective hash function not only verifies the equations, but also that the ciphertext is
valid, and this verification will fail.

We come back again to the case of our equivocable commitment with SPHF that is not a really ex-
tractable/binding commitment since the player can open it in a different way one would extract it, in case
the second ciphertext does not encrypt 1G: if extraction leads to an inconsistent tuple, there is little chance
that with the random ε it becomes consistent; if extraction leads to a consistent tuple, there is little chance
that with the random ε it remains consistent, and then the real-life protocol will fail, whereas the ideal-one was
successful at the NewKey-time. But then, because of the positive NewKey-answer, the SendKey-query takes the
key-input into consideration, that is random on the initiator side because of the SPHF on an invalid word, and
thus indistinguishable from the environment point of view from a failed session: this is a denial of service, the
adversary should already be aware of.

Hence, the three simulations presented below exploit the properties of our commitments and SPHF to make
the view of the environment indistinguishable from a real-life attack, just using the simulator S that is allowed
to interact with the ideal functionality on behalf of players, but in an honest way only, since the functionality
is perfect and does not know bad behavior.

During all these simulations, S knows the equivocability trapdoor of the commitment and the decryption
keys of the two encryption schemes.

Case 1: Pi is A-controlled and Pj is honest. In this case, S has to simulate the concrete messages in the
real-life from the honest player Pj , for which it has simulated the pre-flow and thus knows the signing key, and
has to simulate the queries to the functionality as if the A-controlled player Pi was honest.

Step (I1). This step is taken care of by the adversary, who sends its flow-one, from which S extracts (privi, priv
′
j)

only. No need to extract Wi, but one generates a random valid Vi ∈ L(pub, privi) (we have assumed the existence

2 Note that S only has to send one of these flows if one player is corrupted.

31

of a trapdoor in the CRS to generate such valid words). S then sends the query (NewSession : ssid′, Pi, Pj , Vi, Li =
L(pub, privi), L

′
j = L(pub, priv′j), initiator) to Flake on behalf of Pi.

Step (R2). The NewSession query for this player (Pj , ssid
′) has been automatically transferred from the split

functionality sFlake to Flake (transforming the session identifier from ssid to ssid′). S receives the answer
(NewSession : ssid, Pj , Pi, pub, receiver) and makes a call NewKey to the functionality to check the success of the
protocol. It actually tells whether the languages are consistent, but does not tell anything about the validity of
the word submitted by the adversary for Pi. It indeed receives the answer in the name of Pi. In case of a success,
S generates a word Vj ∈ L(pub, priv′j) and uses privj = priv′j and priv′i = privi for this receiver session (we have
assumed the existence of a trapdoor in the CRS to generate such valid words) and produces a commitment Cj
on the tuple (privj , priv

′
i, Vj). Otherwise, S produces a commitment Cj on a dummy tuple (privj , priv

′
i, Vj). It then

generates a challenge value ε and the hashing keys (hki, hpi) on Ci. It sends the flow-two message (Cj , ε, hpi, σj)
to A on behalf of Pj , where σj is the signature on all the previous information.

Step (I3). This step is taken care of by the adversary, who sends its flow-three.

Step (R4). Upon receiving m = (flow-three, C′i, t, hpj , σi), S makes the verification checks, and possibly aborts.
In case of correct checks, S already knows whether the protocol should succeed, thanks to the NewKey query. If
the protocol is a success, then S computes receiver session key honestly, and makes a SendKey to Pj . Otherwise,
S makes a SendKey to Pj with a random key that will anyway not be used.

Case 2: Pi is honest and Pj is A-controlled. In this case, S has to simulate the concrete messages in the
real-life from the honest player Pi, for which it has simulated the pre-flow and thus knows the signing key, and
has to simulate the queries to the functionality as if the A-controlled player Pj was honest.

Step (I1). The NewSession query for this player (Pi, ssid
′) has been automatically transferred from the split

functionality sFlake to Flake (transforming the session identifier from ssid to ssid′). S receives the answer
(NewSession : ssid, Pi, Pj , pub, initiator) and generates a flow-one message by committing to a dummy tuple
(privi, priv

′
j , Vi). It gives this commitment (Ci, C′′i) to A on behalf of (Pi, ssid

′).

Step (R2). This step is taken care of by the adversary, who sends its flow-two = (flow-two, Cj , ε, hpi, σj), from
which S first checks the signature, and thereafter extracts the committed triple (privj , priv

′
i,Wj). S then sends

the query (NewSession : ssid′, Pj , Pi,Wj , Lj = L(pub, privj), L
′
i = L(pub, priv′i), receiver) to Flake on behalf of Pj .

Step (I3). S makes a NewKey query to the functionality to know whether the protocol should succeed. It
indeed receives the answer in the name of Pj . In case of a success, S generates a word Vi ∈ L(pub, priv′i) and
uses privi = priv′i for this initiator session (we have assumed the existence of a trapdoor in the CRS to generate
such valid words) and then uses the equivocability trapdoor to update C′i and t in order to contain the new
consistent tuple (privi, priv

′
j , Vi) with respect to the challenge ε. If the protocol should be a success, then S

computes initiator session key honestly, and makes a SendKey to Pi. Otherwise, S makes a SendKey to Pi with
a random key that will anyway not be used. S sends the flow-three message (C′i, t, hpj , σi) to A on behalf of Pi,
where σi is the signature on all the previous information.

Step (R4). This step is taken care of by the adversary.

Case 3: Pi and Pj are honest. In this case, S has to simulate the concrete messages in the real-life from
the two honest players Pi and Pj , for which it has simulated the pre-flow and thus knows the signing keys. But
since no player is controlled by A, the NewKey query will not provide any answer to the simulator. But thanks
to the semantic security of the commitments, dummy values can be committed, no external adversary will make
any difference.

Step (I1). The NewSession query for this player (Pi, ssid
′) has been automatically transferred from the split

functionality sFlake to Flake (transforming the session identifier from ssid to ssid′). S receives the answer
(NewSession : ssid, Pi, Pj , pub, initiator) and generates a flow-one message by committing to a dummy tuple
(privi, priv

′
j , Vi). It gives this commitment (Ci, C′′i) to A on behalf of (Pi, ssid

′).

Step (R2). The NewSession query for this player (Pi, ssid
′) has been automatically transferred from the split

functionality sFlake to Flake (transforming the session identifier from ssid to ssid′). S receives the answer

32

(NewSession : ssid, Pj , Pi, pub, receiver) and generates a commitment Cj on a dummy tuple (privj , priv
′
i, Vj).

It then generates a challenge value ε and the hashing keys (hki, hpi) on Ci. It sends the flow-two message
(Cj , ε, hpi, σj) to A on behalf of Pj , where σj is the signature on all the previous information.

Step (I3). When the session (Pi; ssid′) receives the message m = (flow-two, Cj , ε, hpi, σj) from its peer session
(Pj ; ssid′), the signature is necessarily correct. Then, S makes a SendKey to Pi with a random key that will
anyway not be used, since no player is corrupted. S sends the flow-three message (C′i, t, hpj , σi) to A on behalf
of Pi, where σi is the signature on all the previous information.

Step (R4). When the session (Pj ; ssid′) receives the message m = (flow-three, C′i, t, hpj , σi) from its peer session
(Pi; ssid′), the signature is necessarily correct. S makes a SendKey to Pj with a random key that will anyway
not be used, since no player is corrupted.

D.4 Description of the Games

We now provide the complete proof by a sequence of games, where we replace the triple (privi, priv
′
j , Vi) by

the notation Ti, and the triple (privj , priv
′
i, Vj) by the notation Tj , with component-wise operations to simplify

notations. Similarly, for cleaner notations, we use non-vector notations for the ciphertexts, the random coins
and the challenge ε, but all the computations are assumed to be performed component-wise, and thus implicitly
use vectors.

We insist that we are considering static corruptions only, and with the split-functionality, we already know
which players are corrupted and verification keys for the one-time signatures are known to the two players, and
fixed: either honestly generated (honest player) or adversary-generated (corrupted players).

Game G0: This is the real game, where every flow from honest players are generated correctly by the simulator
which knows the inputs sent by the environment to the players. There is no use of the ideal functionality for
the moment.

Game G1: In this game, the simulator knows the decryption key for Ci when generating the CRS. But this
game is almost the same as the previous one except the way skj is generated when Pi is corrupted and Pj honest.
In all the other cases, the simulator does as in G0 by playing honestly (still knowing its private values). When
Pi is corrupted and Pj honest, S does as before until (R4), but then, it extracts the values committed to by
the adversary in Comi (using the decryption key for Ci) and checks whether the private parts of the languages
are consistent with the values sent to Pj by the environment. If the languages are not consistent (or decryption
rejects), Pj is given a random session key skj .

This game is statistically indistinguishable from the former one thanks to the smoothness of the SPHF on
Comi.

Game G2: In this game, the simulator still knows the decryption key for Ci when generating the CRS. This
game is almost the same as the previous one except that S extracts the values committed to by the adversary
in Ci to check consistency of the languages, and does not wait until Comi. If the languages are not consistent
(or decryption rejects), Pj is given a random session key skj .

The game is indistinguishable from the previous one except if Comi contains consistent values whereas Ci
does not, but because of the unpredictability of ε, and the Pedersen commitment that is computationally binding
under the discrete logarithm problem, the probability is bounded by 1/q.

The distance between the two games is thus bounded by the probability to break the binding property of
the Pedersen commitment.

Game G3: In this game, the simulator still knows the decryption key for Ci when generating the CRS, as
in G2. Actually, in the above game, when Pi is corrupted and Pj honest, if extracted languages from Ci are not
consistent, Pj does not have to compute hash values. The random coins are not needed anymore. In this game,
in this particular case, S generates Cj with dummy values T ′j .

This game is computationally indistinguishable from the former one thanks to the IND− CPA property of
the encryption scheme involved in Cj . To prove this indistinguishability, one makes q hybrid games, where q is
the number of such sessions where Pi is corrupted and Pj is honest but extracted languages from Ci are not
consistent with inputs to Pj . More precisely, in the k-th hybrid game Gk (for 1 ≤ k ≤ q), in all such sessions
before the k-th one, Cj is generated by encrypting T ′j , in all sessions after the k-th one, Cj is generated by

33

encrypting Tj , and in the k-th session, Cj is generated by calling the left-or-right encryption oracle on (Tj , T
′
j).

It is clear that the game G2 correponds to G1 with the “left” oracle, and the game G3 corresponds to Gq with
the “right” oracle. And each time, Gk with the right oracle is identical to Gk+1 with the “left” oracle, while
every game Gk is an IND− CPA game. It is possible to use the encryption oracle because the random coins are
not needed in these sessions.

Game G4: In this game, the simulator still knows the decryption key for Ci when generating the CRS, as
in G2. Now, when Pi is corrupted and Pj honest, if extracted languages from Ci are consistent, S knows privj
and priv′i (the same as the values sent by the environment). It furthermore generates a random valid word Vj ,
and uses it to generate the ciphertext Cj instead of re-randomizing the word Wj sent by the environment. S can
compute the correct value skj from the random coins, and gives it to Pj .

This game is perfectly indistinguishable from the former one thanks to the self-randomizable property of
the language.

Note that the value skj computed by S can be computed by the adversary if the latter indeed sent a valid
word Wi in Ci (that is not explicitly checked in this game). Otherwise, skj looks random from the smoothness
of the SPHF. As a consequence, on this game, sessions where Pi is corrupted and Pj is honest look ideal, while
one does not need anymore the inputs from the environment sent to Pj to simulate honest players.

Game G5: We now consider the case where Pi is honest. The simulator has to simulate Pi behavior. To do so, it
will know the equivocability trapdoor for the Pedersen commitment. But for other cases, the simulator still knows
the decryption key for Ci when generating the CRS. In (I1), the simulator still encrypts Ti = (privi, priv

′
j , Vi)

from the environment to produce Ci. It chooses at random a dummy value C′i and computes honestly the
equivocable commitment C′′i , knowing the random value ti. In (I3), after receiving ε from Pj , it chooses random
coins zi and computes Comi as the encryption of Ti = (privi, priv

′
j , Vi) with the random coins zi. (Since this is a

double encryption scheme, it uses the redundancy from Ci: namely for DLCS, it uses ξ from Ci). Thanks to the
homomorphic property, it can compute C′i as (Comi/Ci)1/ε, and equivocate C”i. C′i should be an encryption of
1G under the random coins r′i that are implicitly defined, but unknown.

Thanks to the properties of the different commitments recalled in Section D.1, and the perfect-hiding
property of the Pedersen commitment, this is a perfect simulation. It then computes the hash values honestly,
using zi.

Game G6: In this game, the simulator still knows the decryption key for Ci and the equivocability trapdoor
for the Pedersen commitment when generating the CRS. When Pi is honest, S generates the commitment Ci
by choosing dummy values T ′i instead of Ti. Everything else is unchanged from G5.

This game is thus indistinguishable from the former one thanks to the IND− CCA property of the encryption
scheme involved in Ci. As for the proof of indistinguishability of Game G3, we do a sequence of hybrid games,
where Ci is generated be either encrypting Ti or T ′i , or asking the left-or-right oracle on (Ti, T

′
i). We replace the

decryption key for Ci by access to the decryption oracle on Ci. Then, one has to take care that no decryption
query is asked on one of the challenge ciphertexts involved in the sequence of games. This would mean that the
adversary would replay in another session a ciphertext oracle-generated in another session. Because of the label
which contains the verification key oracle-generated, one can safely reject the ciphertext.

Game G7: In this game, the simulator still knows the decryption key for Ci and the equivocability trapdoor
for the Pedersen commitment when generating the CRS. When Pi is honest, S generates the commitment Ci by
choosing dummy values T ′i . It then computes C′i by encrypting the value (Ti/T

′
i)

1/ε with randomness zi − ri/ε.
This leads to the same computations of Ci and C′i as in the former game. The rest is done as above.

This game is perfectly indistinguishable from the former one.

Game G8: In this game, the simulator still knows the decryption key for Ci and the equivocability trapdoor
for the Pedersen commitment when generating the CRS. When Pi and Pj are both honest (both initiation flows
where oracle-generated), if the words and languages are correct, players are both given the same random session
key ski = skj . If the words and languages are not compatible, random independent session keys are given.

Since the initiation flows (I0 and R0) contained oracle-generated verification keys, unless the adversary
managed to forge signatures, all the flows are oracle-generated. First, because of the pseudo-randomness of the
SPHF, Hi is unpredictable, and independent of H ′j , hence ski looks random. Then, if the words and languages
are compatible, we already has skj = ski in the previous game. However, if they are not compatible, either H ′i

34

is independent of Hi, or H ′j is independent of Hj , and in any case, skj where already independent of ski in the
previous game.

This game is thus computationally indistinguishable from the former one, under the pseudo-randomness of
the two SPHF.

Game G9: In this above game, the hash values do not have to be computed anymore when Pi and Pj are
both honest. The random coins are not needed anymore.

In this game, the simulator still knows the decryption key for Ci and the equivocability trapdoor for the
Pedersen commitment when generating the CRS. When Pi and Pj are both honest, S generates C′i and Cj with
dummy values T ′i and T ′j . In this game, sessions where Pi and Pj are both honest look ideal, while one does not
need anymore the inputs from the environment sent to Pi and Pj to simulate honest players.

This game is computationally indistinguishable from the former one thanks to the IND− PD− CCA and
IND− CPA properties of the encryption schemes involved in C′i and Cj . For the proof on indistinguishability
between the two games, we make two successive sequences of hybrid games, as for the proof of indistinguishability
of Game G3. One with the IND− PD− CCA game: a sequence of hybrid games, where Ci is generated by
encrypting T ′i , and C′i by encrypting either Ti or T ′i , but in the critical session, one asks for the left-or-right
oracle Encrypt on (T ′i , T

′
i), and the left-or-right oracle Encrypt′ on (Ti, T

′
i). The decryption key for Ci is replaced

by an access to the decryption oracle on Ci. As above, one has to take care that no decryption query is asked on
a challenge ciphertext C′i, but the latter cannot be valid since it is computed from Ci values not controlled by the
adversary. The second hybrid sequence uses IND− CPA games on Cj exactly as in the proof of indistinguishability
of Game G3.

Game G10: In this game, the simulator still knows the decryption key for Ci and the equivocability trapdoor for
the Pedersen commitment when generating the CRS, but also the decryption key for Cj . When Pi is honest and
Pj corrupted, S extracts the values committed to by the adversary in Cj . It checks whether they are consistent
with the values sent to Pi by the environment. If the words and languages are not consistent (or decryption
rejects), Pi is given a random session key ski.

This game is statistically indistinguishable from the former one thanks to the smoothness of the SPHF.

Game G11: In this game, the simulator still knows the decryption keys for Ci and Cj and the equivocability
trapdoor for the Pedersen commitment when generating the CRS.

In the above game, when Pi is honest and Pj corrupted, if extracted values from Cj are not consistent,
Pi does not have to compute hash values. The random coins are not needed anymore. In this game, in this
particular case, S generates C′i with dummy values T ′i .

This game is computationally indistinguishable from the former one thanks to the IND− PD− CCA prop-
erty of the encryption scheme involved in C′i. The proof uses the same sequence of hybrid games with the
IND− PD− CCA game on (Ci, C′i) as in the proof of indistinguishability of Game G9.

Game G12: In this game, the simulator still knows the decryption keys for Ci and Cj and the equivocability
trapdoor for the Pedersen commitment when generating the CRS. Now, when Pi is honest and Pj corrupted, if
extracted values from Cj are consistent, S knows privi and priv′j (the same as the values sent by the environment).
It furthermore generates a random valid word Vi, and uses it to generate the ciphertext C′i instead of re-
randomizing the word Wj sent by the environment. S can compute the correct value ski from the random coins,
and gives it to Pi. In this game, sessions where Pi is honest and Pj is corrupted look ideal, while one does not
need anymore the inputs from the environment sent to Pi to simulate honest players.

This game is perfectly indistinguishable from the former one thanks to the self-randomizable property of
the language.

Game G13: In this game, S now uses the ideal functionality: NewSession-queries for honest players are
automatically forwarded to the ideal functionality, for corrupted players, they are done by S using the values
extracted from Ci or Cj . In order to check consistency of the words and languages, S asks for a NewKey. When
one player is corrupted, it learns the outcome: success or failure. It can continue the simulation in an appropriate
way.

35

DLin G Zp Exp.

LCSCom 5n 0 7n+ 2
DLCSCom 10n+ 1 2 18n+ 6

Equality 2 0 14
LPPE 2n+ 1 0 10n+ 11

CSCom G Zp Exp.

CSCom 4n 0 4n+ 1
DCSCom 8n+ 1 2 12n+ 5

Equality 1 0 10
LPPE n+ 1 0 7n+ 9

Table1. Computational and Communication Costs

E Complexity

In the Table 1, we give the number of elements to be sent (group elements or scalars) and the number of
exponentiations to compute for each operation (commitment and SPHF), where we consider the Equality Test,
and the Linear Pairing Product Equations. One has to commit all the private inputs, and then the cost for
relations is just the additional overhead due to the projection keys and hashing computations once the elements
are already committed: an LCSCom commitment is 5 group elements, and a DLCSCom′ is twice more, plus the
Pedersen commitment (one group element), the challenge ε (a scalar) and the opening t (a scalar). Note that a
simple Linear commitment is just 3 group elements.

If the global language is a conjunction of several languages, one should simply add all the costs, and consider
the product of all the sub-hashes as the final hash value from the SPHF.

PAKE. Two users want to prove to each other they possess the same password. In this case Wi = priv′j =
privi = privj = priv′i = Wj . So Pi will commit to his password, and thus a unique DLCSCom commitment for Wi,
privi and priv′i. Pj can use a simple Linear commitment. They then send projection keys for equality tests: 13
group elements and 2 scalars for Comi and 5 group elements for Comj , plus VKi and σi. This leads to 18 group
elements and two scalars our PAKE scheme. The DDH-based variant would use 11 group elements and 2 scalars
only in total, which is far more efficient than existing solutions, and namely [ACP09] that uses a bit-per-bit
commitment to provide equivocability.

Verifier-based PAKE. As explained earlier, we do a PAKE with the common password (gpw, hpw), where h
has been chosen by the server: the commitment Comi needs 21 group elements plus 2 scalars, and 4 additional
group elements to check it; the commitment Comj needs 6 group elements, and 4 additional elements to check
it. Because of the ephemeral h, one has to send in total 35 group elements and 2 scalars, plus the one-time
signatures. The DDH-based variant would use 25 group elements and 2 scalars only in total.

Secret Handshake. The users want to check their partner possesses a valid signature on their public identity
or pseudonym (in pub) under some valid but private verification key (affiliation-hiding). More precisely, Pi wants
to prove he possesses a valid signature σ on the public message m (his identity or a pseudonym) under a private
verification key vk: we thus have m in the pub part, privi = vk and W = σ. This is the same for Pj . Using Waters
signature, σ = (σ1, σ2), where σ1 only has to be encrypted, because σ2 does not contain any information, it
can thus be sent in clear. In addition, as noticed from the security proof, σ2 does not need to be encrypted in
an IND− PD− CCA manner, but with a simple IND− CPA encryption scheme in the third round. To achieve
unlinkability, one can rerandomize this signature σ to make the σ2 values different and independent each time.

As a consequence, the committed values are: vk that can be any group element, since with the master secret
key s such that h = gs for the global parameters of the Waters signature (see the Appendix A.3) one can derive
the signing key associated to any verification key, and thus generate a valid word in the language; and σ1 in
IND− CPA only. One additionally sends σ2 in clear, and so 14 group elements plus 2 scalars for Comi, and 7
group elements for Comj . The languages to be verified are privi = priv′i, on the committed privi = vki with the
expected priv′i = vk′i, and the Linear Pairing Product Equation for the committed signature σi, but under the
expected vk′i: 5 group elements for the projection keys in both directions: 31 group elements plus 2 scalars are
sent in total.

