RSA Conference 2019

San Francisco | March 4–8 | Moscone Center

SESSION ID: CRYP-T07

Downgradable Identity-based Encryption and Applications

Olivier Blazy, Paul Germouty, Duong Hieu Phan

Associate Professor, Xlim, University of Limoges, France http://www.blazy.eu

- Context
- Model
- Generic Transformations
- Construction

RSA Conference 2019

General Context

Identity-Based Encryption

History of IBE

- Shamir '84
- Boneh-Franklin, Cocks '01
- Boneh-Boyen, Waters '05
- Waters '09,
- Chen-Wee, Blazy –Kiltz-Pan

- Context
- Model
- Generic Framework
- Construction
- Applications

So Many Variants

- Hierarchical IBE
- Wildcarded IBE
- Wicked IBE

Relations ?

Relations ?

RSA[°]Conference2019

Identity-Based Encryption

- 4 algorithms:
 - Keygen: Generates mpk, msk
 - USKGen(id, msk): Generates usk[id]
 - Enc(mpk,id): Generates a capsule C leading to a key K for id
 - Dec(C,usk[id]): Recovers K' from C

Procedure Initialize:	Procedure Enc(id*): //one
$(mpk,msk) \stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} Gen(\mathfrak{K})$	query
Return mpk	$(sk^*,C^*) \xleftarrow{\hspace{0.4em}{\$}} Enc(mpk,id^*)$
$\frac{\mathbf{Procedure} \ USKGen(id):}{\mathcal{Q}_{ID} = \mathcal{Q}_{ID} \cup \{id\}}$	$\begin{array}{c} sk^* \stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} \mathcal{K}; C^* \stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} CS \\ \text{Return } (sk^*, C^*) \end{array}$
$\operatorname{Return} usk[id] \xleftarrow{s} USKGen(msk,id)$	Procedure Finalize (β):
	Return $(id^* \not\in \mathcal{Q}_{ID}) \land \beta$

Downgradable Identity-Based Encryption

- **5** algorithms:
 - Keygen: Generates mpk, msk
 - USKGen(id, msk): Generates usk[id]
 - Enc(mpk,id): Generates a capsule C leading to a key K for id
 - Dec(C,usk[id]): Recovers K' from C
 - USKDown(usk[id],id'): Return usk[id'] if id' << id</p>
 - Given a key for an id, one can deduce a key for id' if id' can be obtained by replacing some 1 in id by 0. (101 << 111)

#RSAC

Downgradable Identity-Based Encryption

 $\frac{\mathbf{Procedure Initialize:}}{(\mathsf{mpk},\mathsf{msk}) \stackrel{\$}{\leftarrow} \mathsf{Gen}(\mathfrak{K})}$ Return mpk

Procedure USKGen(id):

 $\begin{aligned} \mathcal{Q}_{\mathsf{ID}} &= \mathcal{Q}_{\mathsf{ID}} \cup \{\mathsf{id}\} \\ \mathrm{Return} \ \mathsf{usk}[\mathsf{id}] \xleftarrow{\$} \mathsf{USKGen}(\mathsf{msk},\mathsf{id}) \end{aligned}$

 $\frac{\operatorname{\mathbf{Procedure}} \operatorname{Enc}(\operatorname{id}^*): \ //\operatorname{one}}{\operatorname{query}} \\ (\operatorname{sk}^*, \operatorname{C}^*) \stackrel{\$}{\leftarrow} \operatorname{Enc}(\operatorname{mpk}, \operatorname{id}^*) \\ \boxed{\operatorname{sk}^* \stackrel{\$}{\leftarrow} \mathcal{K}; \operatorname{C}^* \stackrel{\$}{\leftarrow} \operatorname{CS}} \\ \operatorname{Return} (\operatorname{sk}^*, \operatorname{C}^*) \\ \\ \frac{\operatorname{\mathbf{Procedure}} \operatorname{Finalize}(\beta):}{\operatorname{Return} (\neg(\operatorname{id}^* \preceq \mathcal{Q}_{\operatorname{ID}})) \land \beta} \\ \end{aligned}$

RSA Conference 2019

Transformations

$$\mathsf{id}[2i, 2i+1] = \begin{cases} 01 & \text{if } \mathsf{wid}[i] = 0\\ 10 & \text{if } \mathsf{wid}[i] = 1\\ 00 & \text{otherwise.} \end{cases}$$

Wildcard Identity-Based Encryption

Allows * in targeted identities

Hierarchical Identity-Based Encryption

- Allows to derive keys for lower level
 - This means* at the end of original identities

$$\mathsf{id}[2i, 2i+1] = \begin{cases} 01 & \text{ if } \mathsf{hid}[i] = 0\\ 10 & \text{ if } \mathsf{hid}[i] = 1\\ 11 & \text{ otherwise}(\mathsf{hid}[i] = \bot). \end{cases}$$

Wicked Identity-Based Encryption

- Allows to derive keys for lower level
 - This means * in the original identities

$$\mathsf{id}[2i, 2i+1] = \begin{cases} 01 & \text{ if } \mathsf{wkdid}[i] = 0\\ 10 & \text{ if } \mathsf{wkdid}[i] = 1\\ 11 & \text{ if } \mathsf{wkdid}[i] = * \end{cases}$$

17

RS^AConference2019

- All those transformations are tight
- However they use a space of size 4 for a ternary alphabet.
 - It could be improve, but would not drastically improve the tightness

Attribute-Based Encryption

- User keys have 1 where they have the attribute
- Ciphertext have a 0 where an attribute is not mandatory
- If the policy < attributes, a user can properly downgrade his key

RSA Conference 2019

Construction

Downgradable Identity-Based Encryption

- Can be constructed by adapting BKP'14
 - Can be instantiated under any k-MDDH assumption (SXDH, Dlin,...)
 - Depending on the use case, it is possible to ensure that the downgraded key is indistinguishable from a fresh one.
 - Encapsulation is only k+1 elements (k=1 for SXDH)
 - Same goes for user keys

Wicked / Wildcard Identity-Based Encryption

Name	pk	usk	C	assump.	Sec	Loss
WKD [AKN07]	n+4	n+2	2	BDDH	Sel. standard	$O(nq_k)$
WKD [AKN07]	(n+1)n + 3	n+2	2	BDDH	Full standard	$O(q_k^n)$
WKD-DIBE	4n + 2	3n + 5	5	$\begin{array}{l} DLin \ (\mathrm{any} \\ k - MDDH) \end{array}$	Full standard	$O(q_k)$
SWIBE [KLLO18]	n+4	2n + 3	4	ROM	Full	$O((n+1)(q_k+1)^n)$
WIBE [BDNS07]	(n+1)n + 3	n+1	(n+1)n+2	BDDH	Full standard	$O(n^2 q_k^n)$
Wild-DIBE	4n + 2	3n + 5	5	$\frac{DLin\;(\mathrm{any}\;}{k-MDDH})$	Full standard	$O(q_k)$

Attribute-Based Encryption

Name	pk	sk	C	pairing	$\exp \mathbb{G}$	$\exp \mathbb{G}_t$	Reduction Loss
[OT10]	4U + 2	3U + 3	7m + 5	7m + 5	0	m	$O(q_k)$
[LW12]	24U + 12	6U + 6	6m + 6	6m + 9	0	m	$O(q_k)$
[CGW15]	6UR + 12	3UR + 3	3m + 3	6	6m	0	$O(q_k)$
[Att16]	6UR + 12	3UR+6 $3m+6$	$3m \pm 6$	9	6m	0	$O(q_k)$
scheme 10	0011 + 12		$5m \pm 0$				
[Att16]	$96(M+TR)^2 +$	3UR + 6	3m + 6	9	6m	0	$O(q_k)$
scheme 13	log(UR)						
Our DNF-	AU + 2	$3U \pm 3$	$3k \pm 2$	13	0	0	$O(a_1)$
ABE	40 2	00 0	011 2	10	0	0	$O(q_k)$

Conclusion

- Another IBE related primitive
 - However it can be tightly linked to the others
 - So any progress on DIBE should lead to progress to the other primitive
- Can DIBE be achieved in a Post Quantum world?
- How to avoid the DNF limitation for ABE

RSA[°]Conference2019

Thank you

Any questions?

anR