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conférences auxquelles j’ai pu participer.
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serait dépourvue d’un certain je ne sais quoi : .
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Prolégomènes

Pendant très longtemps la cryptologie, et plus particulièrement la cryptographie se restreignait au chiffre-
ment, c’est à dire s’intéressait à la transmission d’informations entre deux utilisateurs par l’intermédiaire
d’un canal non-sécurisé. Les toutes premières méthodes étaient relativement basiques et gravitaient
autour de substitutions (ou interversions) et de transpositions. On a retrouvé de vieux hiéroglyphes,
également des scytales utilisées par les Spartiates en 900 avant notre ère, et Suetonius rapporte que Jules
César chiffrait ses messages, avec le célèbre chiffrement de César où toutes les lettres sont décalées de
trois dans l’alphabet.

Au cours de l’histoire, il y a eu un duel entre les cryptographes et les cryptanalystes, chacun tentant
de rendre le travail des autres caduque, en essayant de casser les chiffrements, ou au contraire d’en
faire un plus perfectionné résistant aux attaques précédentes. Cette rivalité a transformé les buts de
la cryptographie. Là où le but initial était de conserver la confidentialité d’un message au cours d’un
échange, l’authenticité des données est devenu un problème d’une importance grandissante, puisqu’en
plus de protéger le message, il fallait pouvoir garantir que son contenu n’avait pas été altéré, ou même
qu’il venait bien de la bonne personne. Un des enjeux majeurs de la cryptographie moderne est de réaliser
ces deux objectifs simultanément. Les utilisateurs désirent pouvoir accéder à leurs données à la volée en
toute sécurité, sans pour autant révéler trop d’informations au serveur avec lequel ils interagissent.

Ces nouveaux enjeux ont grandement changé les attentes reposant sur la cryptographie, ce qui l’a
conduite à passer d’une construction ad hoc où les gens essayaient de résoudre un problème dans sa
globalité, en une science beaucoup plus modulaire où on considère des petites briques élémentaires que
l’on prouve, avant de les combiner dans un schéma beaucoup plus complexe.

Il y a une certaine dualité entre ces deux approches, alors que la première donne souvent des schémas
très efficaces avec une preuve de sécurité souvent très complexe, la seconde s’avère souvent moins optimale
mais permet une analyse très fine de la sécurité du schéma résultat.

Au cours de cette thèse on va essayer de réconcilier ces deux approches en proposant des constructions
modulaires qui s’avèrent particulièrement efficaces sans pour autant compromettre la protection des
données des utilisateurs.

Ce travail peut être divisé en deux grandes parties. La première montre comment combiner les briques
de bases usuelles que sont le chiffrement, la signature et les preuves de connaissance non-interactives à
divulgation nulle de connaissance (NIZK), et même ensuite comment les faire commuter pour implémenter
des primitives classiques comme les signatures de groupe, ou les signatures en blanc. Dans la seconde, on
cherche à développer les capacités des preuves implicites de connaissance, grâce aux Smooth Projective
Hash Functions et une fois cela fait, on utilise cette nouvelle brique pour construire plus efficacement
des protocoles d’échanges de clé existants et définir une plus grande classe que l’on appellera LAKE
(englobant les échanges de clés authentifiés par mot de passe, par accréditation ou encore les poignées
de mains secrètes).

Grâce aux signatures digitales, aux chiffrements et aux preuves non-interactives à divulgation nulle de
connaissance, il est aisé de construire plusieurs primitives cryptographiques permettant l’identification,
l’authentification tout en préservant l’anonymat. On se concentrera en premier sur les signatures de
groupe [Cv91]. Elles ont été introduites par Chaum et Van Heyst pour permettre aux membres d’un
groupe, géré par une autorité indépendante, de signer anonymement au nom du groupe. Pour éviter des
dérives, le modèle prévoit que cet anonymat puisse être levé par une autorité supplémentaire (possible-
ment différente de la précédente). Par la suite le modèle a été renforcé selon diverses approches, pour
permettre de déléguer les capacités de levées d’anonymat de certains utilisateurs que ce soit en autorisant
les utilisateurs à lever leur anonymat, à des sous-autorités de tracer un utilisateur spécifique, ou encore
que n’importe qui puisse détecter si quelqu’un signe deux fois au cours d’une même période temps. Nous
nous concentrerons aussi sur les signatures en blanc [Cha83] introduites par Chaum. Ici l’identité de
l’utilisateur est connue, mais par contre le message signé demeure masqué. Elles ont été présentées dans
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vi 0.0

le contexte de la monnaie électronique et sont fréquemment utilisées dans le vote électronique où la
valeur d’un bulletin doit demeurer secrète mais où il faut pouvoir vérifier qu’il provient d’une personne
légitime.

La plupart des protocoles à deux participants peuvent être décrits en disant que soit A veut donner
un message à B seulement si B remplit certaines conditions, soit A et B veulent établir un secret partagé
si et seulement si chacun possède bien les informations que l’autre attend de lui. Beaucoup de protocoles
rentrent dans ce cadre, certaines signatures en blanc permettent à A d’obtenir une signature de B sur un
message, seulement s’il connait le message à signer avant de parler à B, dans les systèmes d’accréditations
(anonymes) B peut accéder à une information seulement s’il a les droits pour, mais cependant il ne veut
pas donner toutes ses accréditations à A, dans les protocoles de mises en accord de clé basés sur les mots
de passe (PAKE) deux utilisateurs établissent une clé de session uniquement s’ils possèdent le même mot
de passe, et dans les poignées de mains secrètes les deux utilisateurs ne tombent d’accord que s’ils sont
dans la même organisation.

Une Brève Histoire de la Cryptographie

Antiquité

La plus vieille trace de cryptographie semble dater de l’Ancienne Égypte. Il y a près de 4000 ans, on a
gravé sur la tombe de Khnumothp à Menet Khufu des instructions dans des hiéroglyphes inhabituels.

Elle a eu ensuite un usage plus militaire.

Autour de 900 avant Jésus Christ, des chiffrements par transposition étaient
couramment utilisés, comme dans le cas des scytales spartiates. On enroulait
une bandelette de papier autour d’un bâton, écrivait un message dessus, puis
déroulait la bandelette. Pour retrouver le message initial, il fallait enrouler la
bandelette autour d’un bâton de même rayon.

On utilisait également des chiffrements par substitution, le plus connu étant le chiffrement de César
(cf [Sue21]2) où chaque lettre était remplacée par celle 3 places plus loin dans l’alphabet. (crypto serait
devenu fubswr). Il y eut aussi des usages plus religieux comme dans l’Ancien Testament (Atbash, Albam
et Albah) qui opéraient des substitutions en prenant les lettres miroirs dans l’alphabet. En transposant
leur principe dans un alphabet latin : le premier transformait a en z, b en y, ...; le second s’arrêtait
au milieu de l’alphabet (a devenait m, et n devenait z), et le dernier était un peu plus compliqué mais
fonctionnait sur la même idée que le chiffrement de César, mais en scindant l’alphabet, tous les trois
étaient des convolutions; et à la même époque on pouvait trouver en Inde un des trois arts oratoires : le
mlecchita-vikalpa qui était un chiffrement de César mais avec une transposition de 1 uniquement (Crypto
serait devenu Dszqup).

Moyen-Age

Il y eut peu d’améliorations à cette époque. Al-Khindi cependant proposa la première vraie cryptanalyse,
en utilisant une technique basée sur les analyses de fréquences des lettres en 800. Ce peu d’avancées
s’explique aussi par le climat de l’époque où écrire dans une langue incompréhensible pouvait s’avérer plus
dangereux que de dévoiler certains secrets. Seuls quelques religieux s’y sont essayés sans grands succès.

Tous les chiffrés connus demeurèrent vulnérables, jusqu’à l’introduction des
chiffrés poly-alphabétiques, précisés par Leon Battista Alberti vers 1467; Jo-
hannes Trithemius proposa la tabula recta dans son ouvrage Poligraphia, grâce à
laquelle Blaise de Vigenère définit le chiffré de Vigenère qui résista aux attaques
pendant longtemps. En 1854 cependant, Charles Babbage parvint à le casser en
devinant qu’il suffisait d’appliquer la méthode d’analyse des fréquences sur des
blocs de taille multiple de la clé. En 1893, le Commandant Étienne Bazeries cassa
également le Grand Chiffre, inventé par Rossignol fleuron de la cryptographie sous
Louis XIV.

2”Exstant et ad Ciceronem, item ad familiares domesticis de rebus, in quibus, si qua occultius perferenda erant, per
notas scripsit, id est sic structo litterarum ordine, ut nullum verbum effici posset; quae si qui investigare et persequi velit,
quartam elementorum litteram, id est D pro A et perinde reliquas commutet.”



0.0 vii

Ère Moderne

C’est à cette époque que se précisa la route à prendre pour la cryptographie. En 1883, Auguste Kerckhoffs
présenta une approche moderne de la cryptographie dans [Ker83] en disant :

1. Le système doit être matériellement, sinon mathématiquement, indéchiffrable.

2. Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient tomber dans les mains de
l’ennemi

3. La clé doit pouvoir en être communiquée et retenue sans le recours de notes écrites, et être
changée et modifiée au gré des correspondants.

4. Il faut qu’il soit applicable à la correspondance télégraphique.

5. Il faut qu’il soit portatif, et que son maniement ou son fonctionnement n’exige pas le concours
de plusieurs personnes.

6. Enfin il est nécessaire, vu les circonstances qui en commandent l’application, que le système
soit d’un usage facile, ne demandant ni tension d’esprit, ni la connaissance d’une longue série
de règles à observer.

Comme souligner dans son traité, les trois dernières règles semblent assez naturelles, et aujourd’hui
encore on vise des systèmes simples d’utilisation et peu coûteux en terme de communication. Cependant,
ce qui marqua l’évolution moderne de la cryptographie fut sa seconde règle. C’était la fin de la Sécurité
par l’Obscurité, un système devait être sûr même si l’ennemi apprenait son principe de fonctionnement.
Shannon l’a résumé plus tard en disant simplement : “L’ennemi connait le système”. Ce n’est pas encore
forcément le cas dans toutes les applications actuelles (certains chiffrement sur les DVD par exemple),
mais les résultats modernes suivent plutôt cette idée. Et cela cöıncide avec la transition récente de la
cryptographie qui est passée d’un usage purement militaire / diplomatique à un usage beaucoup plus
courant accessible à tous.

Deux autres étapes récentes dans la cryptographie tendent à la démocratiser un peu plus : la cryp-
tographie à clés publiques de Diffie et Hellman [DH76] où aucun secret initial ne doit être partagé par
les deux interlocuteurs; puis les preuves de connaissance à divulgation nulle de connaissance [GMR89]
de Shafi Goldwasser, Silvio Micali, et Charles Rackoff qui permettent de prouver la connaissance d’un
secret sans pour autant le révéler.

Dans le chapitre 2, page 15 nous préciserons ces notions, et nous nous en servirons pour construire
de nouveaux protocoles.

Signatures Digitales et Preuves NIZK

Motivation

Signatures de Groupe

Le modèle BSZ est un excellent exemple appelant à une réalisation par le biais d’une construction
modulaire. Ce modèle introduit par Bellare, Shi, et Zhang en 2005 [BSZ05] précise les signatures de
groupe dynamiques. Dans ce modèle, on retrouve 3 types de participants, le certificateur, l’ouvreur
et les membres du groupe. Pour devenir un membre du groupe, un utilisateur doit le rejoindre en
interagissant avec le certificateur (ou du moins avec quelqu’un possédant une clé de certification), à la
fin de l’interaction l’utilisateur obtient une clé de signature privée. Avec cette clé de signature, il peut
dorénavant signer au nom du groupe et n’importe qui peut vérifier la validité de sa signature grâce à la
clé publique du groupe. Si jamais la signature est litigieuse, on peut faire appel à l’ouvreur pour étudier
la signature : en utilisant la clé d’ouverture et la signature incriminée, l’algorithme d’ouverture retourne
l’identité du signataire et une preuve d’ouverture correcte.

Il y a deux pendants à la sécurité. En premier lieu, on désire l’anonymat, c’est-à-dire que sans
connaissance extérieure il doit être difficile de déterminer qui est à l’origine d’une signature. On s’intéresse
également à la résistance aux forges, c’est-à-dire d’une part la traçabilité, toute signature valide doit être
ouvrable en un signataire enregistré et d’autre part la résistance à la diffamation (non-frameability) il
doit être impossible d’incriminer un utilisateur honnête, que ce soit en signant à sa place ou en biaisant
l’ouverture (y compris en cas de coalition des autorités d’enregistrement et d’ouverture).
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Pour montrer qu’un tel modèle est réalisable, Bellare et al. ont proposé la construction suivante. Étant
donné un schéma de signature, un schéma de chiffrement et une preuve de connaissance non-interactive
à divulgation nulle de connaissance (toutes ces notions sont précisées par la suite dans la Section 2,
page 15), on initialise le système en générant une paire de clés de signature et de vérification et une paire
de clés de chiffrement et de déchiffrement. Pour rejoindre le groupe, un utilisateur génère un trousseau
de clés de signature, donne la clé de vérification de celui-ci au certificateur, qui va signer sous sa clé à lui
la clé de vérification de l’utilisateur, en d’autres termes il va lui donner un certificat d’appartenance au
groupe. Un membre peut alors produire une signature du groupe en signant simplement le message avec
sa clé personnelle de signature, puis en chiffrant son certificat, sa clé de vérification et sa signature et en
envoyant ces données simultanément avec en plus une preuve de connaissance non-interactive à divulga-
tion nulle de connaissance montrant que son certificat et sa signature sont bien valides. L’ouverture se
fait en déchiffrant les chiffrés, la clé de vérification donnant alors l’identité du signataire et le certificat
de l’autorité servant de preuve.

L’anonymat est assez automatique puisque la signature de groupe est composée uniquement de chiffrés
ou de preuve de connaissance non-interactive à divulgation nulle de connaissance, devant tous deux ne pas
révéler d’information. La résistance aux forges, vient de la résistance aux forges du schéma de signature
sous-jacent, car si ni la signature du certificat ni la signature d’un utilisateur ne peuvent être forgées
alors cela garantit que toute signature peut être tracée et qu’il n’est pas possible de piéger quelqu’un
impliquant ainsi d’une part la traçabilité et d’autre la résistance à la diffamation.

Une telle approche est la clé de voûte de nos constructions, où nous allons également combiner des
schémas de signature, de chiffrement et des preuves de connaissance non-interactive à divulgation nulle
de connaissance.

La méthodologie Groth-Sahai

Pendant très longtemps, le seul moyen de prouver sures de telles réalisations a nécessité de se reposer
sur l’heuristique de l’oracle aléatoire [BR93] pour les preuves non-interactives à divulgation nulle de
connaissance (en anglais Non-Interactive Zero-Knowledge Proofs of Knowledge ou NIZK [FS87]). Dans
cette heuristique, on suppose qu’il existe une fonction véritablement aléatoire à laquelle l’attaquant, tout
comme les utilisateurs, peut faire appel et qui répond avec une valeur tirée uniformément, par contre
elle retourne toujours la même valeur pour une même entrée. Dans l’implémentation concrète d’un tel
schéma, l’oracle aléatoire va être substitué par une fonction de hachage.

Les preuves non-interactives à divulgation nulle de connaissance sont des preuves de la véracité
d’une affirmation sans donner plus d’informations, très proches des preuves à témoin indistinguable (en
anglais Non-Interactive Witness-Indistinguishable Proofs of Knowledge ou NIWI [FS90],) qui prouvent
la véracité d’une affirmation mais sans révéler le témoin utilisé pour l’affirmer, principalement parce
qu’il n’existait pas d’instanciations efficaces dans le modèle standard. Jens Groth et Amit Sahai ont
proposé un moyen de construire des preuves NIZK et/ou NIWI pour des énoncés (algébriques) sur des
groupes munis d’une application bilinéaire3. En particulier, ils proposent des preuves pour vérifier la
satisfaisabilité simultanée d’un ensemble d’équations. Ils ont proposé trois instanciations spécifiques
basées sur des hypothèses calculatoires différentes : le problème de décision du sous-groupe SD, le
problème symétrique Diffie-Hellman SXDH, et le problème décisionnel linéaire DLin.4 Chacune de ces
approches a déjà donné de nombreuses applications dans les dernières années (par exemple des schémas
de signatures de groupes [BW06, BW07, Gro07] ou de signatures en blanc [AFG+10, BFPV11]). Leur
construction commence par établir des preuves NIWI de satisfaisabilité de certaines équations. Pour
cela, ils proposent de s’engager sur un témoin et ensuite de construire une preuve qui dit que ce témoin
satisfait une équation. Ils répartissent les équations en trois grandes catégories (les produits de couplages5

comme e(Ai,Yj).e(Xi,Yj) = gT , les multiplications multi-scalaires comme A
yj

i .Xi
yj = g, et les équations

quadratiques ai.yj+xi.yj = k), dans le premier type le simulateur peut extraire le témoin de l’engagement
et donc la preuve est une preuve de connaissance.

3On définit un groupe bilinéaire symétrique par (p,G,GT , e, g) avec un nombre premier p ordre d’un groupe G généré
par g avec e une forme bilinéaire qui va de G× G dans un groupe d’arrivée GT d’ordre p généré par e(g, g), et un groupe
bilinéaire asymétrique par deux groupes G1 et G2 de même ordre premier p générés par g1, g2 et est donc représenté par
(p,G1,G2,GT , e, g1, g2) où GT est encore d’ordre p et généré par e(g1, g2).

4Ils sont définis dans la Section 2.2.2, page 17, sauf SD : Dans un groupe multiplicatif d’ordre composé n = pq où p et
q sont premiers, il est dur de déterminer si un élément appartient au sous-groupe d’ordre p

5Les couplages sont des formes bilinéaires de G1 × G2 → GT où G1,G2,GT sont des groupes multiplicatifs de même
ordre. Dans les applications on leur demande de ne pas être dégénérés, c’est-à-dire que l’image de générateurs de G1 et G2

doit être un générateur de GT
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La méthodologie Groth-Sahai et les signatures

Le premier schéma pratique qui a utilisé la méthodologie Groth-Sahai, ou du moins une idée très similaire,
était les signatures Boyen-Waters d’Eurocrypt 2006 [BW06] où les preuves sont dérivées des techniques
de [GOS06b]. Par la suite Belenkiy et al. ont appliqué la transformation Boneh-Boyen, présenté à
Eurocrypt 2004 [BB04], à ce schéma dans [BCKL08]. Pour contruire des accréditations anonymes, ils
s’engagent sur le message et à la signature, puis grâce aux preuves Groth-Sahai ils prouvent que les
contenus sont bien valides. Cependant le message est un scalaire et non un élément de groupe, donc
l’extraction ne peut se faire rigoureusement, ce qui introduit une faiblesse dans la notion de sécurité
considérée. On parle alors de résistance aux F-forges.

En tenant compte de tout cela, nous pouvons en déduire certains pré-requis sur les briques qui vont
nous être nécessaires par la suite, si on désire pouvoir les combiner aisément :

• Le schéma de signature doit avoir une résistance aux forges,

• La signature doit être composée d’éléments d’un groupe bilinéaire,

• Le message doit soit être public, soit un élément de groupe, soit un petit scalaire (pour que le
simulateur puisse l’extraire au besoin),

• La vérification de la validité de la signature doit se faire au moyen d’équation de couplages.

Et bien sûr pour respecter nos objectifs, il faut que ces briques soient efficaces.

Signature traçable

En 2004, Kiayias, Tsiounis et Yung présentèrent à Eurocrypt [KTY04] une nouvelle version des signatures
de groupes qu’ils nommèrent signatures traçables. Leur but était de revisiter l’ouverture pour qu’elle soit
moins pénalisante pour les utilisateurs honnêtes. Il voulait pouvoir autoriser les autorités à déléguer une
partie de leur pouvoir de détection à des sous-autorités pour que celles-ci puissent tracer un utilisateur.
Au lieu d’ouvrir toutes les signatures, et ainsi mettre grandement en danger les informations privées
des signataires honnêtes, ces nouvelles signatures permettent à l’ouvreur de déléguer aux sous-autorités
la possibilité de tracer un utilisateur précis sans pour autant pouvoir révoquer l’anonymat des autres.
Grâce à cela, les sous-ouvreurs peuvent s’exécuter en parallèle, et les utilisateurs honnêtes n’ont plus à
avoir peur pour leur anonymat tant que les autorités ne les tracent pas spécifiquement. Les notions de
sécurité usuelles des signatures de groupe s’appliquent encore, mais sont renforcées, ainsi la propriété de
correction des signatures implique que l’ouverture d’une signature doit donner un utilisateur qui peut
être tracé sur cette signature. L’idée est un peu similaire au chiffrement cherchable de [ABC+05], où une
trappe spécifique à un mot-clé, permet de décider si un chiffré contient un mot-clé ou non, sans révéler
d’information pour les chiffrés avec d’autres mots clés.

En 2008, Libert et Yung dans [LY09] ont proposé un nouveau schéma de signature traçable prouvée
sure dans le modèle standard.

Signature de liste

Les signatures de listes sont une autre variation des signatures de groupe introduites par Canard et
al. dans [CSST06]. Elles laissent un utilisateur signer anonymement, de manière irrévocable s’il agit
honnêtement. Personne ne peut tracer le signataire réel, mais par contre s’il signe deux messages différents
au cours du même intervalle de temps, alors les signatures pourront être liées. Bien évidemment on ne
doit pas avoir besoin d’ouvrir les signatures pour savoir si un utilisateur a signé plusieurs fois. Les
propriétés de sécurités de telles signatures sont proches de celles des signatures de groupe. L’auteur
d’une signature doit être anonyme, et il ne doit pas être possible de produire plus d’une signature valide
par intervalle de temps sans être détecté.

Intuitivement ces signatures peuvent servir lors d’élections, puisque si l’on défini l’intervalle de temps
comme étant le scrutin, un utilisateur va pouvoir voter anonymement sauf s’il essaye de voter plusieurs
fois, et n’importe qui peut alors vérifier si quelqu’un a voté plusieurs fois.

Depuis lors, ce fut un problème ouvert de savoir si de telles signatures pouvaient être construites dans
le modèle standard.
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Signature en Blanc

Les signatures en blanc ont été introduites par Chaum en 1982 dans [Cha83]. Elles autorisent un
utilisateur à obtenir une signature sur un message sans que le signataire ne puisse décider de quelle
interaction découle une signature. Leur sécurité est définie selon deux axes principaux : d’une part, un
utilisateur ne doit pas pouvoir obtenir une signature sur un message non demandé (après q-interactions,
un adversaire ne doit pas pouvoir produire de signatures valides pour q+ 1 messages différents), d’autre
part comme dit précédemment, le signataire ne doit pas pouvoir découvrir quelle interaction est à l’origine
d’une signature.

De telles signatures ont été formalisées par la suite dans [JLO97, PS00], et même instanciées sans
oracle aléatoire de nombreuses fois (comme par exemple dans [CKW04, Oka06]). Cependant toutes ces
approches n’ont jamais été optimales en terme d’interactions, comme il fallait plus d’un aller/retour pour
construire la signature.

Fischlin [Fis06] a donné en 2006 une construction générique pour construire des signatures en blanc
qui respectent cette contrainte d’optimalité, et suite à cette article on a vu émerger des constructions
[Fuc09, AFG+10]. Pour éviter au signataire de retrouver la session de signature, ils définissent une
signature en blanc comme un preuve de connaissance non-interactive d’une signature. Cependant ceci
rend les signatures en blanc nettement plus grosses que les signatures du schéma sous-jacent, et ainsi
jusqu’à maintenant, cette contrainte d’optimalité du nombre d’interactions a été un problème ouvert, si
l’on attend de l’utilisateur qu’il puisse exhiber une signature classique à la fin de l’échange.

Dans le schéma de Fischlin, une signature en blanc est une preuve de connaissance d’une signature
d’un chiffré doublée d’une preuve montrant que le chiffré correspond bien à un message donné. Dans le
schéma de [Fuc09], l’utilisateur obtient une vraie signature sur un message dont il prouve la connaissance.

On va une étape plus loin : une fois encore l’utilisateur obtient une signature sur un message, mais au
lieu d’avoir à faire une preuve de connaissance de cette signature, il lui suffit de changer ses aléas avant
de l’exhiber. En procédant ainsi une signature en blanc a exactement le même format qu’une signature
du message sous-jacent, et donc en plus de vérifier la contrainte d’optimalité du nombre d’interactions,
elle est légère.

Instanciations et Applications

Dans la partie I, page 54, nous donnons des instanciations concrètes basées sur des briques élémentaires,
et montrons leur sécurité respective dans le modèle standard.

Autour des Signatures de Groupe

D’abord dans le chapitre 3, page 55, nous combinons les blocs classiques pour résoudre des problèmes
ouverts dans le modèle standard. Nous débutons dans la Section 3.2, page 57 par une amélioration
du schéma de signatures traçables de Libert et Yung, en ajoutant une fonctionnalité qui permet à
l’utilisateur de dire qu’une signature est à lui ou au contraire de le réfuter. Fondamentalement, en plus
des propriétés classiques d’une telle signature, on ajoute : étant donné une signature, un utilisateur est
en mesure d’affirmer/réfuter, et de justifier cette affirmation, que cette signature est à lui comme illustré
sur la figure 1, page xi. Pour ce faire, nous reformalisons les notions de sécurité usuelles, et précisons
également ce qu’on attend de notre nouvelle fonctionnalité, c’est-à-dire un utilisateur doit être en mesure
de confirmer / infirmer qu’il est l’auteur d’une signature.

Nous construisons ensuite un schéma pour répondre à ces objectifs à partir de blocs usuels, à savoir
le certificat de [DP06]6, la fonction de Dodis-Yampolskiy [DY05] et la signature de Waters que nous
prouvons dans un groupe bilinéaire asymétrique. Nous avons ensuite combiné ces éléments à l’aide de la
méthodologie Groth-Sahai pour pouvoir garantir l’anonymat.

Le certificat Delerablée-Pointcheval [DP06] permettra la délégation des capacités d’ouverture, et ce
grâce à une trappe qui ne suffit pas pour signer mais permet de tracer une signature à un utilisateur
présumé. Les utilisateurs seront également en mesure de confirmer (step-in) ou d’infirmer (step-out)
qu’ils sont le signataire réel, en utilisant leur clé de signature, de manière convaincante, ce qui est une
autre nouvelle propriété attrayante. Pour atteindre cet objectif, nous définissons la notion d’identifiant
unique, lié à chaque signature, et spécifique à l’utilisateur.

6Un tel certificat est de la forme (xi, yi, Ai = (kgyi )1/γ+xi ) où γ est la clé secrète de l’autorité de certification, Ω = gγ

la clé publique du groupe, et yi la clé secrète de l’utilisateur
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Figure 1: Notre nouveau modèle de Signature Traçable

Nous avons besoin de définir une nouvelle hypothèse, une variante hybride du SDH que nous nom-
mons le q − HHSDH). Bien que cette hypothèse soit nouvelle, nous pouvons montrer qu’elle est encore
relativement raisonnable, comme elle est équivalente au q − SDH sous KEA7

Pour ce faire, nous introduisons un identifiant unique ID basée sur la fonction de Dodis-Yampolskiy,
il est fonction de la clé secrète des utilisateurs. On montre ensuite à l’aide de la méthodologie Groth-
Sahai que cette clé secrète a été enregistrée auprès de l’autorité de certification. Et on lie le tout à une
signature Waters8,du message pour résister aux forges. Grâce à l’identifiant, une autorité munie de la
correcte trappe est capable de tracer un utilisateur. Par contre seul le possesseur de la clé d’extraction
des mises en gage est capable de lever l’anonymat de n’importe quelle signature.

L’instanciation finale est deux fois plus efficace que celle du schéma précédent tout en fournissant une
fonctionnalité supplémentaire.

Nous avons ensuite continué à améliorer ce schéma dans la Section 3.3, page 66 pour en faire une
signature de liste, pour cela nous clarifions les exigences de sécurité d’origine en définissant des jeux
de sécurité appropriés. Munis de cette technique de l’identificateur unique, nous pouvons donner une
réponse positive au problème ouvert des signatures de liste dans le modèle standard : si nous construisons
l’identifiant unique comme spécifique à l’utilisateur et à l’intervalle de temps, d’une manière déterministe,
alors deux signatures du même utilisateur au sein de la même période auront le même identifiant.

Signature sur des Chiffrés Randomisés

Par la suite nous abandonnons l’anonymat du signataire, pour vouloir à la place masquer le message.
Pour cela, nous étudions dans le chapitre 4, page 70 une nouvelle primitive que nous appelons Signature
sur des chiffrés randomisés : étant donné une signature sur un chiffré, quiconque doit pouvoir randomiser
le chiffré et adapter la signature en conséquence sans avoir à connaitre la clé secrète de signature.

Ainsi toute paire chiffré / signature sur ce chiffré peut être randomisée de manière consistante.

Bien entendu cela contredit la notion usuelle de résistance aux forges puisqu’on est en mesure de
changer l’objet sur lequel porte une signature, nous devons donc alors définir une nouvelle notion pour
ces signatures pour garantir la sécurité de nos applications : la résistance aux forges d’une signature sur
un chiffré randomisable implique qu’un adversaire ne doit pouvoir produire une signature sur un chiffré
d’un message que s’il en connait déjà une sur le même message. Plus formellement, aucun adversaire ne
peut, après maintes requêtes de signatures sur des chiffrés de son choix, produire une signature sur un
chiffré dont le clair n’était pas l’un de ceux des chiffrés précédents.

7Ces notions sont précisées en Section 3.2.2, page 61. KEA [Dam92] disant qu’étant donné un couple (g, h) pouvoir

donner ga, ha revient à connaitre a, on en déduit aisément qu’étant donné une liste (g, gγ , . . . , gγ
`
), il est aussi dur sous

KEA de donner (gx, hx, g1/(γ+x)) que de donner (x, g1/(γ+x)).
8Étant donné un groupe bilinéaire (p,G, e, g) et des générateurs indépendants h, (ui), on définit pour une paire de clés

de signatures / de vérifications (hx, gx) et un message M (composé de bits mi) la signature Waters de M σ(M) comme la
paire (hxF(M)s, gs où F(M) = u0

∏
u
mi
i



xii 0.0

On étend ensuite notre primitive aux signatures extractables sur des chiffrés randomisables : étant
donné une clé de déchiffrement dk, une signature σ(C) sur un chiffré C on peut extraire une signature
σ(M) sur un clair M . cela permet à l’utilisateur dans un schéma de signature en blanc de retrouver
(SigExtSC) la signature sur le message une fois que le signataire en a signé le chiffré (SignSC).
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Figure 2: Signatures (fortement) extractables sur des chiffrés randomisables

On dit que la notion d’extraction est forte s’il est possible à l’aide de l’aléa r de l’algorithme de
chiffrement EncryptSC d’extraire la signature sur le clair.

Nous donnons plusieurs instanciations de signatures (fortement) extractables sur des chiffrés ran-
domisables, reposant sur des hypothèses classiques. Nos constructions sont toutes basées sur le même
genre de briques élémentaires dont elles héritent la sécurité : des preuves NIWI à la Groth-Sahai [GS08]
et des signatures Waters dérivées de [Wat05] et utilisées dans [BW06]. Comme la vérification de ces sig-
natures est une équation de couplages, cette brique se combine bien avec la méthodologie Groth-Sahai.

La première instanciation est faite dans un groupe bilinéaire symétrique sur des courbes elliptiques et
utilise en plus un chiffrement linéaire [BBS04]. La sécurité sémantique de celle-ci repose sur le problème
décisionnel linéaire (DLin), et la résistance aux forges sur le problème calculatoire Diffie-Hellman (CDH).

La méthode näıve qui consiste à s’engager sur le haché Waters du message9, faire une preuve de
connaissance bit par bit du message, puis recevoir une signature à la Waters sur le chiffré 10, et utiliser
la clé de déchiffrement pour retrouver une signature en clair est proche de notre méthode. Cependant
une étude plus détaillée, montre qu’il est nécessaire d’ajouter une mise en gage sur la clé publique de
signature avec les aléas de la mise en gage en exposant pour pouvoir garantir une résistance aux forges.

Pour éviter de se répéter, nous n’allons pas rappeler l’instanciation sur un groupe bilinéaire asymétrique,
qui elle repose sur le chiffrement ElGamal et la variante SXDH des preuves Groth-Sahai (mais elle est
cependant disponible dans la version complète de [BFPV11]). Même si l’efficacité est meilleure, ce schéma
demande de transférer la signature Waters dans un groupe asymétrique, ce qui fait reposer sa sécurité
non plus sous CDH mais sous une variante que nous nommons CDH+ qui requiert de donner des éléments
en plus à l’adversaire.

Les tableaux 1, page xiii, donnent la taille d’un couple chiffré-signature selon que l’on soit dans
une instanciation symétrique, reposant sur un chiffrement linéaire et une signature Waters classique,
ou asymétrique, reposant sur un chiffrement ElGamal et une signature Waters asymétrique, en outre le
paramètre k dénote la taille des messages.

Grâce à notre nouvelle primitive, nous obtenons immédiatement une signature en blanc raisonnable-
ment efficace avec un nombre optimal d’interactions sures sous des hypothèses standards. Par ailleurs, en
exploitant le fait que notre chiffrement est homomorphe, nous construisons un schéma de vote électronique
non-interactif et sans possibilité de vente de vote comme suit : l’utilisateur chiffre son vote, prouve sa
validité, et envoie le chiffré, une signature de celui-ci, et la preuve au centre de vote. Ce dernier peut
désormais randomiser le texte chiffré, et adapter à la fois la preuve et la signature de l’utilisateur, et

9F(m) = u0
∏
u
mi
i pour des générateurs ui indépendants

10Le signataire envoie hxCs, gs, où C est un terme du chiffré de F(m). Dans notre instanciation basée sur DLin, pour un
chiffré ua, vb, ga+bF(m) le signataire envoie hx(ga+bF(m))s, gs
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Symétrique G
Waters + Linéaire 9 k + 44

Asymétrique G1 G2

Waters + ElGamal 6 k + 9 6 k + 7

Table 1: Éléments de groupes nécessaires pour un couple chiffré-signature selon l’instanciation choisie

ensuite les publier. Après l’annonce des résultats, l’utilisateur peut vérifier sa signature, qui le convainc
que le texte chiffré randomisé contient encore son vote initial en raison de notre notion de résistance aux
forges, mais il ne peut pas prouver à qui que ce soit quel était son vote.

Plus tard, nous reprenons le schéma de signature en blanc pour continuer à le modifier. Tout d’abord,
dans la Section 4.4.1, page 82 nous considérons une version qui réalise des signatures partiellement en
blanc. Ce à quoi nous ajoutons une propriété d’aveuglement parfait, tout en restant sous des hypothèses
standards. Pour cela, on utilise l’autre initialisation des mises en gage dans la méthodologie Groth-
Sahai. Nous avons également élargi le modèle des signatures partiellement en blanc pour ne plus requérir
nécessairement de communication préalable pour se mettre en accord sur la partie publique, pour sim-
plement laisser le signataire la choisir à la volée. Si jamais l’utilisateur ne voulait pas cette modification,
il peut simplement rejeter la signature et recommencer à zéro. Nous appelons cette nouvelle primitive
des signatures en blanc respectueuses du signataire. Bien sûr, cette notion nouvelle n’interdit pas toute
forme d’accord préalable sur la partie publique, elle renforce simplement la notion existante.

Il est maintenant possible de se débarrasser de l’accord préalable sur la partie commune de l’information
publique dans le message signé et notre instanciation permet au signataire de le faire d’une manière opti-
male. Ces deux constructions étant compatibles, nous pouvons présenter une signature partiellement en
blanc, optimale qui propose un aveuglement parfait. Notre protocole ne nécessite pas de pré-traitement
pour la partie publique du message. L’utilisateur et le signataire peuvent tous deux choisir un morceau
de la partie publique, mais au lieu d’avoir un temps de calcul spécifique à l’accord ceci se fait dorénavant
lors de l’interaction. Le signataire peut toujours refuser de signer quelque chose où l’information publique
de l’utilisateur ne lui convient pas et l’utilisateur peut toujours choisir de ne pas exploiter une signature
sans intérêt, c’est pour cela qu’il vaut mieux éviter de gaspiller du temps de communication et rester
dans un protocole de deux flux.

En mettant de coté la propriété d’aveuglement parfait, nous profitons de cette propriété asynchrone
(l’utilisateur et le signataire choisissent indépendamment leurs parties publiques) dans la Section 4.4.2,
page 87 et nous considérons le nouveau contexte où le message devant être signé provient de plusieurs
sources indépendantes qui ne peuvent pas communiquer entre elles. Nous présentons d’abord un moyen
d’obtenir une signature sur la concaténation des messages d’entrée. Nous présentons également une
instanciation plus efficace qui donne une signature sur la somme des messages d’entrée. Une telle somme
peut être utile si l’on travaille sur des bulletins de vote, des informations de capteurs, etc. Comme
nous utilisons la signature Waters, nous nous sommes intéressés à sa programmabilité sur un alphabet
non-binaire d’une manière similaire comme il a été fait dans [HK08] pour l’alphabet binaire. Nous
démontrons un résultat négatif sur la (2, 1)-programmabilité, mais on a une réponse positive sur la
(1, poly)-programmabilité.11

Preuves Implicites de Connaissance et Smooth Projective Hash Functions

Motivation

Nos résultats précédents présentent certes une amélioration de l’efficacité des protocoles actuels mais
nous conduisent cependant à nous poser une nouvelle question. Pourquoi utilise-t-on encore des preuves
non-interactives de connaissance dans des protocoles interactifs ? N’y aurait-il pas une manière d’utiliser
des preuves interactives sans pour autant augmenter le nombre d’échanges dans de tels protocoles ? Dans
la plupart des preuves de connaissance, la dernière étape consiste en un envoi d’un message de la part du
prouveur au vérifieur pour conclure la preuve. Cependant, même si cette approche semble intuitive cela
induit une communication supplémentaire et demande donc au moins 3 échanges (alors que l’on a vu que
2 suffisaient amplement pour des signatures en blanc). Nous allons donc nous intéresser à des preuves
implicites de connaissance, où le vérifieur n’apprend pas nécessairement la véracité de la déclaration
du prouveur, mais par contre il est assuré que seul un prouveur honnête peut exploiter l’information
demandée, ce qui va nous permettre de ne pas augmenter le nombre d’échanges dans nos constructions.

11Intuitivement une fonction est (a, b)-programmable si la probabilité que sur a + b variables, a images vérifient une
certaine contrainte et b ne la vérifient pas, est non négligeable. Cette notion est précisée en Section 2.6.4, page 42.
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Smooth Projective Hash Function

Les Smooth projective hash functions (SPHF) ont été présentées par Cramer et Shoup [CS02] pour
construire des schémas de chiffrement. Une famille de hachés projectifs est une famille de fonctions de
hachage qui peuvent être évaluées de deux manières : soit en utilisant la clé de hachage (secrète) qui
permet de calculer la fonction en tout point du domaine, soit en utilisant la clé (publique) projetée qui
ne permet de calculer la fonction que sur un sous-ensemble du domaine. Une telle famille est dite lisse
(smooth) si l’image de tout point à l’extérieur du sous-ensemble est indépendante de la clé de projection.
De plus s’il est difficile de distinguer si un élément est dans le sous-ensemble, on peut alors voir cette
primitive comme un type particulier de preuve de connaissance à divulgation nulle de connaissance
d’appartenance au dit sous-ensemble. Cette notion de SPHF a déjà trouvé de nombreuses applications
en cryptographie (Par exemple [GL03,Kal05,ACP09]).

Nous préservons aussi d’autres applications basées sur des primitives respectant la vie privée native-
ment interactives. Et nous étendons l’ensemble des langages compatibles avec ces fonctions, et montrons
que par exemple ils peuvent englober des cas non couverts par la méthodologie Groth-Sahai, comme
des équations sans couplages, ou encore impliquant des éléments du groupe d’arrivée GT , et même des
conjonctions et disjonctions de langages relativement différents.

Signatures en Blanc

Comme expliqué dans la section précédente, nous pouvons utiliser des Signatures sur des Chiffrés Ran-
domisables pour obtenir des signatures en blanc à interactions minimales. Cependant la construction
précédente reposait fortement sur les preuves Groth-Sahai et même si l’amélioration était conséquente
par rapport aux solutions antérieures qui ne produisaient pas des signatures classiques, on peut encore
vouloir améliorer l’efficacité de notre schéma. Ainsi l’un de nos premiers résultats avec notre nou-
velle méthodologie de preuves implicites de connaissance est d’augmenter l’efficacité de la construction
précédente sans en diminuer la sécurité.

Il y a de plus en plus de travaux sur les protocoles gravitant autour de la négociation automatisée
de confiance, ce qui inclut les Oblivious Signature-Based Envelope [LDB03] (une famille de protocoles
autorisant un utilisateur à envoyer un message sans apprendre l’affiliation de ce dernier, mais en étant sûr
qu’il ne pourra le lire que s’il appartient au bon organisme), les Poignées de main secrètes [BDS+03] (où
deux utilisateurs apprennent s’ils appartiennent à la même organisation, mais sans apprendre l’organisation
de l’autre si ce n’est pas le cas), et les schémas de mise en accord de clés gravitant autour des mots de
passe [BM93, BPR00], ou d’accréditations secrètes [BHS04]. Tous ces schémas sont étroitement liés (en
combinant astucieusement deux d’entre eux, il est possible d’obtenir n’importe quel autre [CJT04]).

Oblivious Signature-Based Envelope

Les Oblivious Signature-Based Envelopes (OSBE) ont été introduites dans [LDB03]. Elles peuvent être
vues comme une solution élégante pour palier le déséquilibre inhérent de certains protocoles d’identification.
Alice est membre d’une organisation et possède un certificat produit par une autorité attestant ce fait.
Bob veut envoyer un message privé P aux membres de cette organisation. Cependant à cause de la
nature de l’organisation, Alice ne désire donner à Bob (ou à qui que ce soit d’autre) ni son certificat, ni
une preuve qu’elle appartient à la dite organisation. Les OSBE permettent à Bob d’envoyer une version
obfusquée du message P à Alice, de manière telle qu’Alice puissent y accéder si et seulement si elle
est dans la bonne organisation. A l’issue de l’interaction, Bob ne peut pas savoir si Alice appartient
réellement à l’organisation.

La sécurité d’un OSBE est usuellement définie en 2 points : l’utilisateur (Bob) ne doit pas pouvoir
savoir si Alice utilise une signature valide d’une part, et d’autre part Alice ne doit pouvoir accéder au
message de Bob que si elle a utilisé une signature valide. Nous améliorons le premier point, en disant que
qui que ce soit (et plus particulièrement l’autorité qui a donné la signature à Alice) ne doit pas pouvoir
décider si Alice a utilisé une signature valide, et ajoutons la propriété que l’autorité ne doit pas pouvoir
a posteriori obtenir le message de Bob même si elle a écouté la communication entre lui et Alice.

Poignées de mains secrètes

Le concept de protocoles de poignées de mains secrètes (Secret Handshakes) a été présenté en 2003 par
Balfanz, Durfee, Shankar, Smetters, Staddon et Wong [BDS+03] (puis développer plus en détails par
[JL09,AKB07]). Il permet à deux membres d’un même groupe de s’identifier comme tels mutuellement



0.0 xv

en secret, c’est-à-dire qu’un utilisateur n’apprend l’affiliation de l’autre que s’ils appartiennent au même
groupe. A la fin du protocole, les participants génèrent une clé de session pour sécuriser de futures
communications et un extérieur ne peut savoir si la poignée de main a réussi. Divers raffinements
peuvent être joué comme la présence de rôle en plus de l’organisation, ou même encore les organisations
peuvent être différentes . . .

Échange de Clés Authentifié par mot de passe

Les Password-Authenticated Key Exchanges (PAKE) ont été formalisés par Bellovin et Merritt [BM92]
et ont donné lieu à de nombreux travaux sous diverses hypothèses (comme [ACP09, CCGS10] et leurs
références). Ils permettent à des utilisateurs de générer une clé cryptographiquement forte basée sur un
mot de passe simple à mémoriser (avec peu d’entropie) sans avoir besoin d’un système à clé publique.
Dans ce contexte, un adversaire contrôlant toutes les communications d’un réseau et apte à corrompre les
participants n’importe quand ne doit pas pouvoir faire une attaque par dictionnaire, une fois déconnecté.

Il existe une variante où un utilisateur connâıt un mot de passe, et le serveur ne connâıt qu’une
fonction (à sens unique) de celui-ci. Ainsi si le serveur est compromis, le mot de passe n’est pas révélé
immédiatement.

Échange de Clés Authentifié par accréditation

Plus récemment, les Credential-Authenticated Key Exchanges (CAKE) ont été introduits par Camenisch,
Casati, Groß et Shoup dans [CCGS10]. Dans cette primitive, une clé commune est établie si et seulement
une certaine relation est vérifiée par les accréditations que possèdent les deux utilisateurs.

Ils montrent que cette approche doit englober les divers types de protocoles précédents et esquissent
des instanciations de divers schémas comme par exemple un protocole de PAKE. Leur méthodologie
gravite autour de leur système de preuves à divulgation nulle de connaissance dans le modèle UC sur
des problèmes de représentation12.

Résultats et Instanciations

Notre principale contribution dans la Partie II, page 92 est de définir une méthodologie générale pour faire
des preuves implicites de connaissance. Nous nous concentrons sur la présentation de cette approche dans
un groupe symétrique donc sous l’hypothèse décisionnelle linéaire DLin. Cependant, on peut montrer
que la même approche peut être faite dans un groupe asymétrique sous XDH et non SXDH.

Smooth Projective Hash Functions sur des mises en gage

Pour faire nos preuves implicites de connaissance, nous définissons des Smooth Projective Hash Functions
sur des mises en gage. Si l’on désire faire un parallèle avec la méthodologie Groth-Sahai, nous partons
du principe que l’on possède un mot M et un témoin m que ce mot appartient à un langage L. Nous
nous engageons ensuite sur M et envoyons cette mise en gage. Le Vérifieur ensuite calcule une clé de
hachage hk, une clé de projection hp sur le langage L qu’il attend de nous, et sa vue du haché H. Il nous
envoie alors hp ainsi que l’information désirée masquée par H. Le prouveur à l’aide de son témoin m et
de hp peut alors calculer sa propre vue H’ du haché. Si en effet m était bien un témoin que M était
dans L alors H ′ = H et il peut donc en déduire l’information demandée, sinon il n’apprend rien.

Langages Utilisables

Cette méthodologie nous a poussés à essayer d’accrôıtre le spectre des langages prouvables par des SPHF.
Abdalla et al. ont montré comment utiliser des conjonctions et disjonctions de langages dans [ACP09],
nous allons donc nous concentrer sur des langages de base. Dans le Chapitre 5, page 93, nous procédons
par étape. Nous débutons par une mise en gage d’une signature valide et montrons comment procéder,
nous montrons également comment gérer une mise en gage d’une mise en gage. Nous voyons alors que
ces deux méthodes peuvent se ramener à un langage vérifiant une mise en gage de 1. Nous pouvons déjà
itérer à partir de là (et donc gérer des mises en gage de langages), mais surtout cela nous donne une
bonne idée sur la manière de développer de nouveaux langages de base. Nous montrons alors que nous
pouvons traiter n’importe quel langage composé de mots (découpés en éléments Yi à mettre en gage dans

12Étant donné g et u1, u2, u3, u4, il faut donner α, β, γ, δ tels que g = uα1 u
β
2u

γ
3u
δ
4



xvi 0.0

Symétrique G
Groth-Sahai 9 k + 44
avec SPHF 8 k + 12

Asymétrique G1 G2

Groth-Sahai 6 k + 9 6 k + 7
avec SPHF 5 k + 6 1

Table 2: Éléments de groupes nécessaires pour un couple chiffré-signature selon l’instanciation choisie

G, dans ci, pour i ∈ J1,mK et en éléments Zi à mettre en gage dans GT , dans Ci, pour i ∈ Jm+ 1, nK)
satisfaisant des équations linéaires étendues de la forme suivantes :(∏

i∈Ak

e(Yi,Ak,i)

)
·

(∏
i∈Bk

Zzk,i

i

)
= Bk, pour k ∈ J1, tK.

où Ak,i ∈ G, Bk ∈ GT , et zk,i ∈ Zp, ainsi que Ak ⊆ J1,mK et Bk ⊆ Jm+ 1, nK sont publiques.
Intuitivement notre méthode cherche le plus possible à transformer les langages en un langage simple

(triplet linéaire). Dans le cas des équations de couplages, le langage est simple, d’une part on demande
à ce que chaque chiffré soit valide, donc cela va associer un résidu à chaque chiffré (si on a un triplet
(ur, vs, h) , il est possible de voir h comme gr+sYi), et ensuite un langage supplémentaire qui dit que les
résidus sont tels que l’équation est vérifiée.

Nous voyons alors que notre méthodologie peut traiter des mots à la fois dans G et GT , ce qui n’était
pas possible avec la méthodologie Groth-Sahai. Nous pouvons même montrer que dans certains cas
nous arrivons à nous passer de couplages quand tous les mots sont dans G (comme par exemple pour
les quadruplets Diffie-Hellman (g, ga, gb, gab)), ce qui est une amélioration significative. Dans le cas de
groupe asymétrique, nous pouvons aussi trouver des cas intermédiaires où il faut certes des couplages
mais seulement sous XDH et non SXDH (nécessaire pour la méthodologie Groth-Sahai), ce qui permet
d’exploiter les courbes elliptiques de type-II et d’être nettement plus efficace.

Dans des instanciations pratiques, nous utilisons souvent des langages simples avec des équations
linéaires du type e(Y,A) = B, notre méthodologie nous demanderait alors 3 éléments de groupe pour
la mise en gage et 2 pour la clé de projection (donc la preuve implicite), là où l’approche basée sur
Groth-Sahai en requiert 3 pour la mise en gage et également 3 pour la preuve finale, ce qui nous rend
sensiblement plus efficace. De plus nous n’avons plus besoin de deux états dans la CRS. De cette façon
nous n’avons plus à jongler entre les deux types de clés de mise en gage.

Dans un contexte asymétrique, nous pouvons également faire plus que des équations linéaires (au
sens de Groth-Sahai), en gérant simultanément plusieurs équations du type :(

m∏
i=1

e(Xi,Bi)

)
·

 n∏
j=1

e(Aj ,Yj)

 ·( o∏
k=1

Zzk
k

)
= gT ,

où Aj ,Bi, gT sont des valeurs publiques, dans G1, G2 et GT respectivement, et où Xi,Yj ,Zk sont les
valeurs privées mises en gage, dans G1, G2 et GT respectivement.

Avec ce nouvel outil, nous pouvons alors considérer et améliorer plusieurs solutions récentes ce que
nous détaillons dans le Chapitre 6, page 102.

Signature en Blanc à interactions minimales

Pour montrer l’efficacité de notre méthode et sa facilité d’utilisation nous révisons notre schéma de
signatures en blanc [BFPV11] en supplantant les preuves à la Groth-Sahai par nos nouvelles preuves.
Notre approche convient parfaitement et réduit significativement le coût des communications. Nous
gagnons même un facteur 3 dans une des instanciations, puisqu’en asymétrique nous pouvons nous
passer de toute mise en gage dans G2, cela nous permet d’ailleurs de reposer sur XDH et non SXDH
élargissant ainsi les courbes elliptiques que nous pouvons utiliser. (C’est-à-dire Type-II et Type-III selon
la terminologie de [GPS08] au lieu de seulement celles de Type-III comme requis dans [BFPV11].)

Comme précédemment, les tableaux 2, page xvi, donnent la taille d’un couple chiffré-signature selon
que l’on soit dans une instanciation symétrique, à base de chiffrement linéaire et d’une signataire Waters
classique avec soit des preuves Groth-Sahai soit des SPHF, ou asymétrique, à base de chiffrement ElGamal
et d’une signataire Waters asymétrique avec soit des preuves Groth-Sahai soit des SPHF, en outre le
paramètre k dénote la taille des messages :
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Par rapport au schéma précédent, il y a un gain important dans la partie constante dans l’instanciation
sous DLin (dans des groupes symétriques) grâce à nos Smooth Projective Hash Functions, et comme
expliqué précédemment le gain est encore plus notable en asymétrique puisque nous retirons quasiment
tous les éléments de G2 (ce qui souligne une forte redondance dans les preuves Groth-Sahai), les éléments
de ce groupe étant deux fois plus gros que ceux de G1 le gain est particulièrement notable.

Oblivious Signature-Based Envelope

Une autre de nos contributions est de clarifier et d’améliorer les attentes de sécurité des schémas d’OSBE
dans la Section 6.1, page 102. L’extension de sécurité réside dans une protection face à l’autorité de
certification qui n’est pas capable d’apprendre les messages envoyés aux utilisateurs, ni de savoir si ces
derniers ont utilisé leur certificat. (Ce qui est schématisé dans la Figure 3, page xvii) La notion d’OSBE
est un vrai dual de l’idée de SPHF, il suffit de considérer le langage L composé des chiffrés d’une
signature valide qui sont durs à distinguer dans l’espace des chiffrés sous l’indistingabilité du schéma de
chiffrement. Nous montrons comment construire une Smooth Projective Hash Function sur ce langage L
et en déduisons un schéma d’OSBE dans le modèle standard. Nous prouvons ensuite la sécurité de notre
construction vis à vis de celle du protocole de mise en gage (de chiffrement), de celle de la signature et de
celle de la SPHF. On montre ensuite comment construire un schéma simple et efficace d’OSBE reposant
sur l’hypothèse classique DLin. En faisant cela, on voit que notre nouvelle primitive est plus efficace que
Groth-Sahai, et ne nécessite pas d’interaction supplémentaire dans le protocole.

ProjHash(hp, (WLin(ck, vk,M), C, w) = v′

P ′ = Q⊕ v′

Q

σ

hk = HashKG(L, param)

v = Hash(hk, (L, param), c)

P

hp = ProjKG(hk, (L, param), c)

ck, σ; r

Q = P ⊕
v

Commit

σ(M
)

c

Figure 3: L’émetteur (sender) à droite veut envoyer un message P à l’utilisateur U à gauche, et ce si et
seulement si U possède une signature σ(M) valide sous vk.

Notre méthode ne nécessitant pas d’interaction supplémentaire, elle remplace agréablement Groth-
Sahai dans les cas interactifs.

Les OSBE ne sont pas forcément les protocoles les plus utilisés en cryptographie, cependant cette
construction est la clé de voûte de nos autres constructions, et les problèmes liés aux OSBE se retrouvent
dans tous les protocoles d’échanges de clés. Ils sont donc une étape cruciale dans la mise en place des
protocoles d’échange de clé basés sur les langages (LAKE) et la technique de preuves implicites à l’aide
de Smooth Projective Hash Functions va prendre une place prépondérante dans nos schémas.

Échange de Clés Authentifié par des Langages

Nous proposons ensuite dans la Section 6.3, page 111 une nouvelle primitive qui englobe les notions
précédentes de PAKE et poignées de mains secrètes. Elle est aussi très étroitement liée aux CAKE
et nous l’appelons donc LAKE, pour Language-Authenticated Key-Exchange, puisque les participants
établissent une clé commune si et seulement s’ils possèdent des accréditations qui appartiennent à des
langages spécifiques (et possiblement indépendants) sans que les joueurs n’aient forcément à s’accorder
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avant le protocole. Cette définition est nettement plus pratique que celle des CAKE de [CCGS10] mais
les deux méthodes restent sensiblement similaires13.

Les PAKE sont un cas particulier de LAKE, où chaque utilisateur possède un mot de passe pw∗ et
espère que l’autre possède un mot de passe dans le langage L = {pw∗}. De même les poignées de mains
secrètes disent que chaque utilisateur possède une signature valide selon la clé d’une certaine autorité,
et espère que l’autre en possède une valide sous la clé d’une autorité. Nous permettons d’ailleurs une
certaine granularité puisque l’autorité peut être la même pour les deux utilisateurs ou non, et où leur
identité peut être publique ou non, . . .

Cette nouvelle primitive permet donc entre autre des authentifications mutuelles préservant la con-
fidentialité et des protocole d’échange de clé en permettant à deux membres d’un même groupe de
s’authentifier mutuellement secrètement sans avoir à révéler leur groupe préalablement.

Pour définir la sécurité de cette primitive, nous utilisons le cadre d’Universal Composability, et
précisons ce que nous appelons un langage ce qui permet de dissocier la partie publique de la rela-
tion (les informations publiques impliquées dans la vérification que l’utilisateur veut faire), de la partie
privée que possède chaque utilisateur qui atteste l’appartenance aux langages. Nous fournissons une
fonctionnalité idéale de LAKE et donnons des réalisations efficaces de cette primitive (pour notre famille
étendue de langages) que nous prouvons sures sous diverses hypothèses dans le modèle standard (avec
une CRS) et des corruptions statiques.

Nous produisons également une façon d’évaluer les coûts de tels protocoles en fonction des types
de langages et de mises en gage utilisés, que ce soit en nombre d’éléments ou d’exponentiations. Nous
utilisons les résultats usuels sur les conjonctions de langage, auxquels nous adjoignons nos nouveaux
résultats sur les équations linéaires de couplages, nous traitons également les égalités. Nous expliquons
aussi comment gérer les disjonctions avec des précautions supplémentaires.

Avec cette approche nous obtenons les protocoles de PAKE les plus efficaces dans le modèle stan-
dard avec CRS (améliorant considérablement les schémas de [ACP09, CCGS10] tant en terme de coût
calculatoire qu’en nombre d’échanges) comme par exemple celui de la figure 4, page xix.

Nous améliorons également l’efficacité de plusieurs protocoles de CAKE [CCGS10], et élargissons les
langages pour lesquels nous pouvons construire de tels schémas. Ce qui nous permet donc de construire
des protocoles de poignées de main secrètes avec des propriétés renforcées (comme la forward-secrecy
même avec une autorité corrompue), et nous obtenons aussi un protocole de PAKE résistant aux cor-
ruptions du serveur (en adaptant légèrement le protocole précédent, nous arrivons aussi à obtenir un
protocole permettant de s’authentifier auprès d’un serveur avec un mot de passe dont il connait unique-
ment une fonction (Verifier-based PAKE )).

Outils supplémentaires

En poursuivant nos objectifs initiaux, nous rencontrons fréquemment des idées annexes qui sans être
forcément primordiales pour résoudre le problème peuvent permettre des améliorations importantes de
l’efficacité de plusieurs schémas.

Nous présentons ainsi dans la Section 2.6, page 35 certains de ces outils que nous avons dû construire
et prouver.

Autour de la fonction de Waters

Avec notre approche modulaire, nous utilisons fréquemment la signature de Waters. Nous avons eu
plusieurs résultats annexes autour de celle-ci. Par exemple, nous avons proposé et prouvé une version
asymétrique de la signature dans [BFPV11], ce que nous rappelons dans la Section 2.6.3, page 41.

Un autre résultat important autour de la fonction de Waters réside sur sa programmabilité sur
un alphabet non-binaire. Alors que dans [HK08], Hofheinz et Kiltz ont montré la (2, 1) et (1, q)-
programmabilité sur un alphabet binaire, nous avons décidé de généraliser leur résultat pour pouvoir
autoriser certaines forges homomorphiques comme dans le cas de nos réseaux de senseurs. Nous mon-
trons facilement dans la Section 2.6.4, page 42 que la fonction n’est plus (2, 1)-programmable sur un
alphabet non-binaire. Par contre, en retravaillant leur approche probabiliste et en s’appuyant sur le
Théorème Central Limite Local [DM95], nous avons pu montrer qu’elle restait (1, q)-programmable, tant
que la taille t des blocs ne grandissait pas trop vite (Cela améliore le résultat précédent de [Nac05])14.
Le théorème central limite local donne en quelque sorte une approximation de Pr(

∑
ai = k) pour des

13A priori, toutes les primitives d’échange de clés actuelles doivent pouvoir être formalisées par les deux approches.
14Nous montrons que tant que 2t = O(logK) la fonction reste (1, q)-programmable
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CRS: Un groupe G d’ordre prime p, avec six générateurs indépendants (g1, g2, h, c, d, ζ)
$← G6,

une fonction de hachage résistante aux collisions HK
a, une application réversible G de {0, 1}n

dans G, un schéma de signature (KeyGenS ,Sign,Verif). On notera M = G(m), et ` = (sid, ssid, Pi, Pj).
(SKi,VKi)← KeyGenS()

`i = (`,VKi)

ai, ri
$← Zp

(Ci, C′i) = DCSCom(`i,Mi, 1G; ri, ai),

ti
$← Zp, χi = HK(Ci, C′i), C′′i = gti1 ζ

χi
VKi, Ci, C′′i−−−−−−−−−−−−−−−→

rj
$← Zp

Cj = CSCom(`′j ,Mj ; rj),
ξi = HK(`i, ~ui, ei),

hki = (ηi, θi, λi, µi)
$← Z4

p,
hpi = ProjKG(hki, (Li,j , param), ξi)

Cj , ε, hpi←−−−−−−−−−−−−−−− ε
$← Z∗p

ε
?

6= 0, z = ri + εai,
ξj = HK(`, ~uj , ej),

hkj = (ηj , θj , λj , µj)
$← Z4

p,
hpj = ProjKG(hkj , (Lj,i, param), ξj),
H ′i = ProjHash(hpi,Lpriv, `

′
i, CiC′i

ε
; z),

Hj = Hash(hkj ,Lpriv, `
′
j , Cj),

Ki = H ′i ·Hj ,
σi = Sign(SKi, (`i, Ci, C′i, Cj , ε, hpi, hpj))

hpj , C′i, ti, σi−−−−−−−−−−−−−−−→
χi = HK(Ci, C′i),
Hi = Hash(hki,Lpriv′ , `

′
i, CiC′i

ε
),

H ′j = ProjHash(hpj ,Lpriv′ , `
′
j , Cj ; rj),

Kj = Hi ·H ′j ,
Si πi = gti1 ζ

χi et si
Verif(VKi, (`i, Ci, C′i, Cj , ε, hpi, hpj), σi)
on définit la session comme acceptée.

Figure 4: Le protocole de PAKE découlant de notre méthodologie

aUne fonction HK est résistante aux collisions, s’il est dur de trouver 2 entrées distinctes x et y telles que HK(x) = HK(y)

variables indépendantes et identiquement distribuées ai. (C’est une version du Théorème Central Limite
dans laquelle la conclusion est renforcée la convergence de la loi devient une convergence ponctuelle
localement uniforme des densités.)

Figure 5: Nombres de sommes de marche aléatoire centrée, dont la somme est la valeur sur l’axe des
abscisses, sur une expérience de 10000 lancers

On peut voir sur la figure 5, page xix, les conséquences du Théorème Central Limite Local, la majeure
partie des sommes des marches centrées sont en 0, et il y a un nombre conséquents de somme dans un
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intervalle pas trop grand autour de ce point, c’est-à-dire dans un intervalle centré en 0 et de taille le
double de la racine du nombre de lancers (les bornes de l’intervalle sont ici symbolisées par les barres
verticales).

Grâce à cela, on peut éviter d’avoir à découper un message bit par bit pour faire un haché Waters, et
ainsi au lieu de calculer F(M) = u0

∏
umi
i pour chaque bit mi, il est possible de considérer des blocs de

bits Mi et donc de calculer : u0

∏
uMi
i ou même u0u

M
1 si l’espace des messages est de taille raisonnable.

Une conséquence immédiate, en plus de la réduction du nombre de générateurs nécessaires, est qu’il est
possible de signer plusieurs messages Mi à la Waters avec σ = (sk(

∏
F(Mi))

s, gs) et de résister aux
forges sous CDH tant que le nombre de messages est raisonnable par rapport au paramètre de sécurité,
ce que nous exploitons dans une des applications de nos signatures en blanc.

Batch Groth-Sahai

La vérification d’une preuve Groth-Sahai est relativement lente (à cause du nombre de couplages à
calculer). Nous étudions dans [BFI+10] une méthode pour batcher la vérification, c’est à dire vérifier
plusieurs preuves simultanément. Nous accélérons ainsi la vérification sans mettre en défaut son intégrité.
Nous partons du travail de Ferrarra et al. dans [FGHP09], et parvenons à construire une réponse valide
à la question “Est-ce que toutes ces preuves sont valides ?”. Dans l’affirmative alors hormis avec une
probabilité négligeable toutes les preuves sont en effet valides, sinon une approche de type diviser pour
régner permet de retrouver les affirmations fausses.

Nous détaillons dans la Section 2.6.1, page 35 notre approche basée sur la version DLin des preuves
Groth-Sahai en détaillant les formules explicites de vérification par lot, puis nous les appliquons dans
la Section 2.6.2, page 38 nos résultats à des protocoles existants. (Une fois encore nous omettons de
détailler nos résultats en asymétrique)

Dans le tableau 3, page xx, nous présentons un rapide récapitulatif de nos résultats.

Approche näıve Calcul en Batch
SXDH

Produits de Couplages 5m+ 3n+ 16 m+ 2n+ 8
Multiplications multi-scalaires dans G1 8m+ 2n+ 14 min(2n+ 9, 2m+ n+ 7)

Équations quadratiques 8m+ 8n+ 12 2 min(m,n) + 8
DLin

Produits de Couplages 12n+ 27 3n+ 6
Multiplications multi-scalaires 9n+ 12m+ 27 3n+ 3m+ 6

Équations quadratiques 18n+ 24 3n+ 6

Table 3: Nombre de couplages par vérification, où n et m représentent le nombre de variables.

Étonnamment notre approche en plus d’améliorer la vérification d’un groupe de signatures s’avère
aussi extrêmement efficace lorsqu’il s’agit de vérifier ne serait-ce qu’une seule signature, dans le cas de
la signature de Groth [Gro07] nous passons de 68 à 11 couplages pour en vérifier une seule, le résultat
le plus impressionnant provient des P -signatures de [BCKL08], les auteurs évaluaient initialement la
vérification d’une preuve dans un contexte symétrique à un calcul de 126 couplages. Avec notre résultat,
nous prouvons qu’il en faut simplement 12 pour une unique signature, et à peine 3n+9 pour n signatures.

Multi Cramer-Shoup

Nous nous intéressons également au chiffrement Cramer-Shoup [CS98] dans la Section 2.6.5, page 46.
Pour notre approche UC nous avons besoin de plusieurs modifications sur le schéma initial. Nous
montrons en premier lieu que si nous utilisons le même haché pour plusieurs chiffrés simultanés alors
le chiffrement reste CCA, cela nous permet de chiffrer un vecteur avec un seul calcul de haché ; même
si cela peut sembler un peu annexe, ce résultat sera crucial dans notre méthodologie quand on voudra
utiliser Cramer-Shoup sans faire exploser le nombre de clés de projection requises.

Ensuite, en s’inspirant de l’approche de Lindell dans [Lin11], nous considérons un chiffré Cramer-
Shoup composé en fait de deux chiffrés C et C′, et nous montrons qu’un tel chiffrement fournit une
indistingabilité contre les attaques à chiffrés choisis avec déchiffrement partiel, notion que nous précisons
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dans la Section 2.6.5, page 48.15 où étant donné un chiffré (C, C′) un adversaire est autorisé à demander
le déchiffrement de C et doit fournir le déchiffrement de (C, C′). C est un chiffré Cramer-Shoup valide,
alors que C′ non puisque le haché considéré est celui de C. Ces résultats sont justifiés et prouvés dans
la Section 2.6.5, page 46, tant sur Cramer-Shoup que sur sa version linéaire de [Sha07,CKP07].

De cette construction nous parvenons à élaborer un schéma de mise en gage équivocable dans la Sec-
tion 2.6.6, page 52. Pour cela, on procède comme au dessus avec C un chiffré de ~M et C′ un chiffré de
1G. Ensuite on utilise une mise en gage de Pedersen sur un haché de ~m, C′ pour faire C′′ et on envoie
C, C′′. Notre interlocuteur nous envoie alors un challenge ε en réponse, auquel on répond avec C′ et une
preuve d’ouverture du Pedersen. Pour pouvoir ouvrir la mise en gage, on combine les aléas de C et C′ à
l’aide d’ε, puis on les envoie pour montrer que CC′ε est bien une mise en gage de M . Cela revient à faire
un Sigma-Protocole sur notre mise en gage initiale.

Par exemple si l’on se base sur notre résultat sur le Cramer-Shoup linéaire, on obtient le protocole
présent dans la figure 6, page xxi.

• Setup(1K): On considère un groupe multiplicatif G d’ordre premier p, avec dix générateurs

indépendants (g1, g2, g3, h1, h2, c1, c2, d1, d2, ζ)
$← G10, une fonction de hachage résistante

aux collisions HK , et une application réversible G de {0, 1}K dans G. On note ek =
(c1, c2, d1, d1, h1, h2,HK);

• Commit(`, ~m;~r,~s,~a,~b, t): pour (~r,~s,~a,~b, t)
$← Z4n+1

p , avec ~M = G(~m)

(C, C′)← n− DLCS(`, ek, ~M, (1G)n;~r,~s,~a,~b)
χ = HK(~m, C′),
C′′ = gt1ζ

χ C, C′′−−−−−−−−−−−−−−−→
~ε←−−−−−−−−−−−−−−− ε

$← Z∗p, ~ε← (ε, . . . , ε)
∏
i εi

?

6= 0

z = (zr = ~r + ~ε× ~a, zs = ~s+ ~ε×~b)

• Decommit(`, C, C′, ~ε): C′, t, ~m, z−−−−−−−−−−−−−−−→ ~M = G(~m), χ = HK(~m, C′)
compute ξ from C, C′′ ?= gt1ζ

χ

C × C′~ε ?= n− LCS∗(`, ~M, ξ; zr, zs)

Figure 6: Schéma de mise en gage équivocable n− DLCS

Cette mise en gage n’est pas vraiment extractable, car il est possible pour un C′ habilement construit,
c’est à dire chiffrant une valeur autre que 1G, d’ouvrir la mise en gage finale sur une valeur autre que sur
celle extractable après l’étape de mise en gage (c’est à dire contenue de C). En connaissant le log discret
des générateurs du Pedersen, il est possible d’adapter t pour que la vérification de C′′ fonctionne.

Bien que ce soit possible de corriger cette propriété en doublant la mise en gage initiale, cette propriété
ne nous est pas nécessaire, il nous suffit en effet dans nos instanciations de simplement être sûr que dans le
cas d’un tel C′, alors il est impossible pour la personne mettant en gage de contrôler la valeur d’ouverture
finale, ce dont nous pouvons être sûrs grâce au ε qui va porter sur un clair différent de 1G.

Notre mise en gage demeure équivocable puisque si l’on connait les logarithmes delatifs de g1 et ped,
il est possible de tricher sur la mise en gage de Pedersen et de choisir son C′ après avoir vu le ε.

Articles

Les travaux menant à cette thèse ont donné lieu à divers articles publiés ces trois dernières années :

Batch Groth Sahai [BFI+10]

avec Georg Fuchsbauer, Malika Izabachène, Amandine Jambert, Hervé Sibert, et Damien Vergnaud.

Nous revisitons la méthodologie générale Groth-Sahai pour les preuves non-interactives à divulgation
nulle de connaissance (et à témoins indistinguables) en leur appliquant des techniques récentes de

15Informellement, l’adversaire choisit deux clairs M0,M1, voit un chiffré C de l’un deux, puis après d’éventuelles requêtes
de déchiffrement il choisit deux autres clairs N0, N1 et reçoit un chiffré C′ de l’un deux (de N0 si M0 était chiffré, de N1

sinon). Après d’autres requêtes de déchiffrement, il doit alors décider quel clair a été choisi. Bien sûr, il échoue s’il pose
une requête de déchiffrement impliquant C ou C′.
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vérification par lot. Cette méthode consiste en la vérification simultanée de plusieurs équations en
échange d’une erreur négligeable.

Nous présentons d’abord des formules explicites de vérification par lot pour les équations Groth-
Sahai génériques : ces méthodes montrent un gain d’un facteur 10. Et ensuite nous les appliquons à
deux protocoles spécifiques : les signatures de groupe de Groth [Gro07] et les P-Signatures de Belenkiy,
Chase, Kholweiss et Lysyanskaya de [BCKL08] où l’on voit des gains encore plus importants et cela dès
la vérification de la première signature.

Signatures on Randomizable Ciphertexts [BFPV11]

avec Georg Fuchsbauer, David Pointcheval, Damien Vergnaud.

Les chiffrements randomisables autorisent n’importe quel utilisateur à transformer un chiffré en un chiffré
nouveau du même clair. De manière analogue, une signature randomisable peut être transformée en une
nouvelle signature sur le même message. Nous combinons ces deux primitives en une nouvelle qui peut
être décrite ainsi : étant donné une signature sur un chiffré n’importe qui peut, sans connaissance de
la clé de signature ou du message initial, randomiser le chiffré et adapter la signature sur le nouveau
chiffré pour qu’elle reste publiquement vérifiable. De plus, quiconque possède la clé de déchiffrement et
une signature sur un chiffré peut extraire la signature sur le clair associé. Comme cette notion contredit
la résistance aux forges usuelle, nous avons défini une nouvelle notion plus souple qui dit juste qu’un
adversaire ne doit pas pouvoir produire une signature sur un chiffré dont le clair associé n’est pas le clair
d’un des chiffrés précédemment signés.

Nous instancions cette primitive à l’aide de preuves à la Groth-Sahai et de signatures Waters, et nous
les prouvons sous des hypothèses classiques dans le modèle standard avec une CRS. Comme applications,
nous montrons comment construire un système de vote efficace, non-interactif, et publiquement vérifiable
sans que pour autant l’utilisateur ne puisse vendre son vote (Dans un tel schéma un votant ne peut pas
prouver pour qu’il a voté, ce qui empêche donc la vente de votes). Notre primitive permet également un
système de signature en blanc à interactions optimales qui en plus produit une signature classique à la
fin.

Achieving Optimal Anonymity in Transferable E-Cash with a Judge [BCF+11]

avec Sébastien Canard, Georg Fuchsbauer, Aline Gouget and Hervé Sibert, et Jacques Traoré16.

Le terme de monnaie électronique (e-cash) désigne la monnaie échangée électroniquement. On désire
reproduire dans ce contexte les principales fonctionnalités de la monnaie traditionnelle. Une de celles-ci
est la transmission décentralisée, c’est-à-dire que pour transmettre de l’argent, il n’est pas nécessaire de le
redéposer à la banque entre chaque intermédiaire. L’anonymat des utilisateurs dans de telles transactions
est une propriété de sécurité qui a été longuement étudiée.

Ce papier propose le premier schéma de monnaie électronique, à la fois sûr et efficace, à parvenir au
niveau d’anonymat le plus fort au sens de Canard et Gouget [CG08]. C’est-à-dire qu’il ne doit pas être
possible pour des adversaires recevant une pièce de décider s’ils l’ont eu auparavant. Notre proposition
est construite à partir des preuves Groth-Sahai et des signatures commutantes de Fuchsbauer [Fuc11].

Traceable Signature with Stepping Capabilities [BP12]

avec David Pointcheval.

Kiayias, Tsiounis and Yung ont introduit de nouvelles signatures pour résoudre des problèmes intervenant
lors de l’ouverture dans les schémas de signatures de groupe. Ils voulaient permettre aux autorités de
déléguer une partie de leurs capacités de détections à des sous-autorités. Mais au lieu de les autoriser à
ouvrir n’importe quelle signature et ainsi à mettre en danger la vie privée des utilisateurs honnêtes, les
sous-autorités ne peuvent savoir que si une signature appartient ou non à un utilisateur spécifique.

En 2008, Libert and Yung ont proposé une nouvelle instanciation de ces signatures qui fut la première
à la fois efficace et prouvée sure dans le modèle standard. Nous présentons une nouvelle instancia-
tion plus efficace (en nombre d’éléments de groupe envoyés). Nous ajoutons aussi une fonctionnalité
supplémentaire permettant aux utilisateurs d’affirmer ou d’infirmer la parenté d’une signature.

Comme les signatures de liste sont relativement proche de cette primitive, nous en profitons pour
adapter notre instanciation et ainsi présenter les premières signatures de liste sans oracle aléatoire.

16Ce papier n’est pas repris dans cette thèse, cependant les techniques utilisées sont inspirées de nos autres résultats
gravitant autour de la méthodologie Groth-Sahai
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Round-Optimal Privacy-Preserving Protocols with Smooth Projective Hash Functions [BPV12b]

avec David Pointcheval, et Damien Vergnaud.

Dans ce papier, nous démontrons que la notion de smooth projective hash functions peut s’avérer efficace
pour créer des protocoles interactifs à la fois optimaux en nombre d’interactions et protégeant les données
personnelles des utilisateurs. Nous montrons que cette approche est parfaitement applicable pour des
schémas reposant sur des hypothèses usuelles dans le modèle standard avec une CRS, et s’avère plus
efficace que la méthodologie Groth-Sahai.

Pour illustrer cela, nous construisons des schémas d’OSBE en considérant, le langage constitué des
chiffrés de signatures valides sous une certaine clé, et des schémas signature en blanc optimaux en nombre
d’interactions, en considérant cette fois le langage d’une conjonction de chiffrés d’un bit.

Nous voyons ainsi qu’à l’aide des Smooth Projective Hash Functions, il n’est plus nécessaire de reposer
sur SXDH en asymétrique.

Compact Round-Optimal Partially-Blind Signature [BPV12a]

avec David Pointcheval, et Damien Vergnaud.

Les signatures partiellement en blanc ont de nombreuses applications autour de l’anonymat, comme dans
les schémas de monnaie et de vote électroniques. Elles étendent la notion de signature en blanc classique
en considérant des messages composés de deux parties l’une publique (commune à l’utilisateur et au
signataire) et l’autre privée (choisie par l’utilisateur et signée à l’aveugle). Le signataire ne peut ensuite
lier la paire message-signature à l’interaction initiale parmi d’autres paires avec la même partie publique.

Ce papier présente un tel schéma avec un nombre optimal d’interactions, qui en plus peut être
complètement masquant (il n’existe aucun moyen calculatoire de connâıtre le message signé) dans le
modèle standard muni d’une CRS et ce sous des hypothèses classiques (DLin et CDH ou leurs pendants
en asymétrique). Ce schéma est plus efficace que les précédents tant en nombre d’interactions qu’en
poids final et repose sur des hypothèses plus faibles, et comme précédemment il produit à la fin une
signature Waters donc très efficace.

En plus de cela, nous montrons comment se passer de la mise en accord préalable requise par les
schémas précédents pour définir la partie publique des messages. Dans notre protocole cette étape peut
être mise de côté puisque techniquement les deux utilisateurs peuvent choisir la partie publique à la
volée. Intuitivement, cette notion n’est pas plus faible, puisqu’un signataire pouvait refuser de signer
tant que la partie publique ne lui convenait pas et inversement un utilisateur pouvait décider de ne pas
utiliser la signature finale.

Avec cette propriété asynchrone, nous montrons aussi comment signer en blanc plusieurs messages
venant de sources différentes, d’abord en les concaténant sans rien apprendre sur les messages initiaux
avant d’obtenir la signature finale, puis en les additionnant, pour cela nous montrons un résultat sur la
programmabilité de la fonction de Waters sur des alphabets non-binaires.

Efficient UC-Secure Authenticated Key-Exchange for Algebraic Languages [BCPV12]

avec Céline Chevalier, et David Pointcheval, et Damien Vergnaud.17

Les protocoles d’échanges authentifiés de clés (AKE) permettent à deux participants d’établir une clé
partagée et cryptographiquement sure via un réseau non sécurisé en utilisant divers moyens d’authentifications,
comme des clés cryptographiques, des petites (à faible entropie) clés secrètes ou des accréditations. Dans
ce papier, nous donnons une méthodologie générale qui englobe toutes les primitives d’AKE précédentes
comme les échanges de clé authentifiés par mots de passe (PAKE), ou des protocoles de poignées de main
secrètes. Nous l’appelons LAKE, le L étant pour désigner que nous reposons sur des Langages (Language
Authenticated Key-Exchange).

Nous présentons en premier la primitive générale dans le modèle UC, pour ensuite montrer que
l’approche de Gennaro-Lindell peut permettre d’y répondre facilement. Mais pour cela, nous avons
besoin de smooth projective hash functions sur de nouveaux langages, dont l’implémentation efficace est
d’un intérêt indépendant. Nous présentons de telles SPHF pour les langages définis comme étant une
combinaison d’équations linéaires de produits de couplages.

Combiné avec un système de mise en gage efficace dérivé de schéma de Lindell nous obtenons ainsi une
réalisation pratique d’un protocole de poignées de main secrètes, mais aussi des protocoles de Credential-
Authenticated Key Exchange. Nous obtenons aussi des protocoles de PAKE extrêmement efficaces et

17En soumission
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présentons même une version de ceux-ci où le serveur ne stocke pas le mot de passe directement mais
seulement une fonction à sens unique de celui-ci pour protéger l’utilisateur en cas de corruptions.

Nos protocoles sont tous prouvés sûrs dans le modèle UC, sous l’hypothèse décisionnelle linéaire
(DLin). ?
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Until recent years, cryptology and more precisely cryptography was used to refer to encryption, i.e. to
allow the transmission of information between parties over an insecure channel. The first methods were
simple and revolved around substitution and transposition ciphers, Spartan were claimed to use scytale
around 900 BC, or Caesar’s cipher where one simply shifts each letter with the third one afterwards in
the alphabet.

Throughout the history there have been a fight between cryptographers and cryptanalysts. This
fight transformed the goals of cryptography. While the primary goal was to keep unintended parties
from learning the contents of the message being exchanged, data authenticity became more and more a
concern as it aims at guaranteeing that the content of the message has not be tampered with, or that
the sender is indeed the correct sender. One of the challenge of modern cryptography is to design new
protocols which fulfil those two goals simultaneously, any user wants to be able to access to his information
when needed in a secure way, without telling to mush to the server with whom he is communicating.

These new goals have widen the expectation relying on cryptography. With these new considerations
the cryptography has transitioned from an ad hoc approach where designers tried to solve problems as
a whole, to a well established science with a more modular approach where small building blocks are
considered and proven independently and then combined into a more complex scheme.

There is a duality between those two approaches, the first one often yields efficient results bound to
more complex security proofs, while the latter may be less efficient but with a more intuitive construction
which leads to an easier security analysis.

Throughout this thesis we are going to try to bridge the gap between those approaches, by proposing
new modular constructions which are still efficient, and respect the privacy of the users.

Our work can be divided into two main parts, the first one shows that the classical blocks that
are encryption, signature, and non-interactive zero-knowledge (NIZK) proof systems can be combined
efficiently, and even commuted to implement various classical schemes (like Group signatures, or Blind
signatures), while the second one aims to emphasize the possibilities of implicit proofs of knowledge
through many interactive protocols (like Oblivious Signature-Based Envelope, PAKE, CAKE or Secret
Handshakes).

Thanks to digital signatures, encryptions and NIZK, one can achieve many cryptographic primitives
providing means of identification, authentication while simultaneously preserving anonymity. We first

1
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focus on group signature [Cv91]: they allow member of a group, managed by a group manager, to sign
anonymously on behalf of the group. To prevent abuse, this anonymity can be revoked by an additional
authority. We then consider blind signatures [Cha83] which are quite the opposite, the user’s identity
is known while the message signed is hidden. They were introduced for electronic cash, and used in
electronic voting where the value of a ballot should be hidden while his validity remains guaranteed.

A huge category of interactive protocols between two participants can easily be summed up by saying
that either a user A wants to give a message to B, possibly at his request, only if B already possesses
some information, either two users A and B wants to established a shared secret if each possesses some
different information. Those ideas includes many common protocols, some blind signatures requires that
B possesses the message signed, (anonymous) credentials allow B to access information only if he is
allowed to without revealing is true identity to A, Password Based Key Exchange protocols allow two
user to established a shared secret key if they both posses the same password, while Secret Handshakes
requires them to belong to the same organisation.

1.1 A Brief History of Cryptography

1.1.1 Ancient Time

The oldest known text to contain some cryptographic aspect seems to be dated from the ancient Egypt
around 4000 years ago. The tomb of Khnumothep in Menet Khufu is covered with unusual hieroglyphic
instructions.

Other known cryptographic uses at this time were either transposition ciphers like
the Scytale used by the Spartans in 900 BC, where you had to roll a piece of paper
around some cylinder, like a staff, write your message on it, unroll the paper, and
only a person with a same-sized staff can easily read the message.

There were also lots of substitution ciphers, the more famous being Caesar’s cipher (cf [Sue21]1)
where each letters is shifted by three (caesar becomes fdhvdu), there were also three kind present in the
Bible (Atbash, Albam and Albah) who were mirrors in the alphabet (a shifts with z, b with y, . . . ), half
mirror (a with m, b with l, . . . , n with z, o with y. . . ), or some kind of Ceasar’s Cipher, but all of them
were convolutions; and there was the mlecchita-vikalpa in India, who was a Caesar’s cipher but with a
shift of 1 (love becomes mpwf).

1.1.2 Medieval Era

There were quite few improvements. Al-Khindi proposed the first known crypt-
analysis of ciphers, using a technique based on the frequency analysis around 800
AD. All known ciphers remained vulnerable until the first polyalphabetic ciphers.
Leon Battista Alberti explained them clearly around 1467; Johannes Trithemius
proposed the tabula recta in Poligraphia, thanks to which Blaise de Vigenère de-
vised a practical polyalphabetic system (the Vigenère cipher) which was to be
broken by Charles Babbage only around 1854.

1.1.3 Modern Era

In 1883, Auguste Kerckhoffs presented the premise of the modern cryptography approach in [Ker83] by
stating the 6 rules reminded in figure 1.1, page 3:

While the last rules are really intuitive and call for simplicity and low communication cost, the
second rule remains the most important one. It was the end of Security through Obscurity, cryptographic
cryptosystem should remain secure even if the enemy knows them. Or as later said Shannon: “The enemy
knows the system”. While in practical applications this is not always the case yet (some encryption on
DVD for example), modern research starts from this premise. This coincides with the transition of
cryptography from pure military / diplomatic use, to a more everyday use.

Two major milestones allow to go a little further: the introduction of public-key cryptography by
Diffie and Hellman [DH76] where no initial secret has to be shared to start a conversation over an
insecure channel, and zero-knowledge proofs [GMR89] which allowed user to prove the knowledge of a
secret without revealing it.

1”Exstant et ad Ciceronem, item ad familiares domesticis de rebus, in quibus, si qua occultius perferenda erant, per
notas scripsit, id est sic structo litterarum ordine, ut nullum verbum effici posset; quae si qui investigare et persequi velit,
quartam elementorum litteram, id est D pro A et perinde reliquas commutet.”
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1. The system must be practically, if not mathematically, indecipherable;

2. It must not be required to be secret, and it must be able to fall into the hands of the enemy
without inconvenience;

3. It must be easy to communicate and remember the keys without requiring written notes, it
must also be easy to change or modify the keys with different participants;

4. The system ought to be compatible with telegraph communication;

5. It must be portable, and its usage and function must not require the concourse of several
people;

6. Finally, regarding the circumstances in which such system is applied, it must be easy to use
and must neither require stress of mind nor the knowledge of a long series of rules.

Figure 1.1: Translation of the 6 rules stated by Kerckhoffs about modern cryptography

In chapter 2, page 15 we are going to precise those notions, and then build protocols based on them.

1.2 Digital Signatures Enhanced with NIZK

1.2.1 Motivation

Group Signatures

A good example of modular design comes from the BSZ model for dynamic group signatures from [BSZ05].
In this model three kinds of participants, the issuer, the opener and group members play. To become a
member of the group, a user has to join the group by interacting with the issuer (or at least someone
who possesses the issuer key), at the end of the interaction the user obtains a private signing key. With
this key, he can now sign in name of the group and anyone can verify the validity of his signature thanks
to the group public key. If something is litigious, the opener can open a group signature: on input of the
opening key, and the incriminated signature, an algorithm outputs the identity of the signer and a proof
of correct opening.

There are two main security requirements, first anonymity which says that without extra-knowledge
it should be hard to know who produced a signature, and then unforgeability which simultaneously states
that any valid signature should be opened to a registered user, and that no coalition can produce a valid
signature and a proof of correct opening that incriminates an honest user.

To show that such model can be achieved, Bellare et al. give the following definition. Given a
signature scheme, an encryption scheme, and non-interactive zero-knowledge proofs (those notions are
properly defined later on throughout Section 2, page 15), the setup produces a pair of verification and
signing keys, a pair of encryption and decryption keys. To join a group, a user produced a personal
signature key pair, and gets from the issuer a certificate, in other word a signature under the issuer key,
on the verification key. A member can then produce a group signature simply by signing the message
with her personal signing key, encrypting her certificate, her verification key, and this signature, and then
producing those ciphertexts together with a non-interactive zero-knowledge proof that the certificate and
signature in the plaintext are indeed valid. The opening is done by decrypting the ciphertexts, where
the verification key gives the user’s identity and the signature corresponds to the unforgeable proof.

The anonymity is quite intuitive given that the group signature is only composed of a NIZK [FS87]
and ciphertexts, both leaking no information. The unforgeability of the group signatures comes from the
unforgeability of the underlying signature scheme, the signature from the issuer can not be forged so the
traceability is guaranteed, and the signature under a user signing key can not be forged which induces
the non-frameability.

Such modular approach is also the corner stone of our constructions, where we also combine together
compatible signature scheme, encryption scheme, and non-interactive zero-knowledge proofs.
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The Groth-Sahai Methodology

Until recently, the random oracle model was commonly used in practical instantiations who needed either
non-interactive zero-knowledge proofs or non-interactive witness-indistinguishable proofs, mostly because
the generic instantiations in the standard model were way too inefficient. Groth and Sahai proposed a
way to produce efficient and practical NIZK and non-interactive witness-indistinguishable (NIWI [FS90],)
proofs for (algebraic) statements related to groups equipped with a bilinear map.2 In particular, they
give proofs for the simultaneous satisfiability of a set of equations. They proposed three instantiations
of their system based on different (mild) computational assumptions: the subgroup decision problem
(SD), the symmetric external Diffie-Hellman problem (SXDH) and the decision linear problem (DLin).
Each one of these has already given rise to several applications in recent years (e.g. group signature
schemes [BW06, BW07, Gro07] or blind signatures [AFG+10, BFPV11]). Their construction starts by
building a witness-indistinguishable proof of satisfiability of certain equation. To do so, one commit to
a witness and than constructs proofs which claim that the witness satisfy the equation. They divide the
equations into three main kinds (pairing product, multi-scalar multiplication, and quadratic equation), in
the first one, where equations are composed of product of pairings applied to the variables and constants
for the group, a simulator can extract the witness from the commitment and so the proofs are in fact
proofs of knowledge.

Groth-Sahai Methodology and Signatures

The first practical schemes to use Groth-Sahai methodology, or an idea close-enough, were the Boyen
and Waters group signatures [BW06] where the proofs were in fact derived from the original techniques
from [GOS06b]. Belenkiy et al. then apply the Boneh-Boyen [BB04] transformation to the Boyen-Waters
scheme in [BCKL08] to obtain fully secure signatures. To construct anonymous credentials, they commit
to the message and a signature and then thanks to Groth-Sahai proofs they prove that their content
is valid. However as the message is a scalar and not a group element, the extraction can not be done
properly, which induce either a weakening in the security notion, where the consider F-unforgeability, or
a bit per bit commitment of the message.

With that in mind, this gives us some requirements on the blocks we are going to use if we want to
be able to combine them properly.

• The signature scheme has to be existentially unforgeable against chosen-message attacks,

• The signature should be composed of elements in a bilinear group,

• The message should either be public, or a group element, or a short scalar, (for the extractability)

• The signature verification should be done with pairing product equations.

Of course, as this is one of our primary goal, we want all the building blocks to be efficient.

Traceable Signature

Traceable signatures schemes were introduced by Kiayias, Tsiounis and Yung in [KTY04] in order to solve
traceability issues in group signature schemes. They wanted to enable authorities to delegate some of
their detection capabilities to tracing sub-authorities. Instead of opening every single signatures and then
threatening privacy, traceable signatures allow the opener to delegate the tracing decision for a specific
user without revoking the anonymity of the other users: the opener can delegate its tracing capability to
sub-openers, but against specific signers without letting them trace other users. This gives two crucial
advantages: on the one hand tracing agents (sub-openers) can run in parallel; on the other hand, honest
users do not have to fear for their anonymity if authorities are looking for signatures produced by
misbehaving users only. The security properties are the same as those for the group signatures, excepts
that the correctness is superseded by if a signature opens to i then it also leads to a positive answer for the
trace procedure under user i’s related keys. This is in the same vein as searchable encryption [ABC+05],
where a trapdoor, specific to a keyword, allows to decide whether a ciphertext contains this keyword or
not, and provides no information about ciphertexts related to other keywords.

In 2008, Libert and Yung in [LY09] proposed the first traceable signature schemes proven secure in
the standard model with limited possibilities for the signer.

2A bilinear group (p,G1,G2,GT , e, g1, g2) is a composed of multiplicative groups G1,G2,GT of prime order p generated
respectively by g1, g2, e(g1, gb) where e is a pairing, i.e. a non-degenerated bilinear form from G1 × G2 to GT . If G1 = G2

such group is said to be symmetric.



1.2 Digital Signatures Enhanced with NIZK 5

List Signature

List signatures were introduced by Canard et al. in [CSST06]. They let users sign anonymously, in an
irrevocable way, but grant linkability in a specific time-frame: no one can trace back the actual signer,
but if a user signs two messages within a specific time-frame, the signatures will be linkable.

Security properties are similar to group signatures: Anonymity, given two honest users i0 and i1, the
adversary should not have any significant advantage in guessing which one of them has issued a valid
signature, and Soundness, an adversary can produce at most one valid signature per time-frame per
corrupted player, Since then, it has been an open problem to know if there was any way to construct
such a list signature scheme in the standard model.

Such signature may find application in voting protocols where one want to detect double voting
without opening each ballot.

Round-Optimal Blind Signature

Blind Signatures were introduced by Chaum in [Cha83]. They allow a user to obtain a signature on
a message so that the signer can not decide which interaction has lead to a specific signature. This
leads to two main security requirements, the Blindness where given two interactions producing two valid
signatures on two different messages an adversary should not be able to efficiently guess which interaction
produced which signature, and the unforgeability where after q interactions an adversary should not be
able to produce q + 1 valid signatures (on different messages). They were further formalized in [JLO97,
PS00], and even instantiated without random oracles many times (like in [CKW04, Oka06]). However
all those approaches were not round optimal, as they had more than one round of communication.
Fischlin [Fis06] gives a generic construction of round-optimal blind signatures which has been efficiently
instantiated recently [Fuc09, AFG+10]. To prevent the signer from linking a blind signature to the
signing session, they define a blind signature as a (non-interactive) proof of knowledge of a signature.
This makes blind signatures significantly longer than signatures of the underlying scheme, and so up to
now instantiation of round-optimal blind signatures in the standard model has been an open problem, if
we expect to obtain the user to exhibit a regular signature at the end.

In Fischlin’s scheme a blind signature is a proof of knowledge of a signature on a ciphertext together
with a proof that the ciphertext decrypts to the message. In the scheme in [Fuc09], the user obtains an
actual signature on the message, of which he proves knowledge.

We go one step further: again, the user can extract a signature on the message; but instead of making
a proof of knowledge, it suffices to simply randomize it to make it unlinkable. A blind signature has
therefore the same format as the underlying signatures and, in addition to being round-optimal, is thus
short.

1.2.2 Instantiations and Applications

In Part I, page 54, we give concrete instantiations build on simple blocks, and show their respective
security in the standard model.

Around Group Signatures

First in Chapter 3, page 55, we combine classical blocks to solve open problems in the standard model.
We start in Section 3.2, page 57 by building a new efficient traceable signature which allows user both to
step in and out of a signature. Basically in addition to the classical properties of a traceable signature,
we provide the following: given a signature, a user is able to claim, and justify this claim, that this
signature is her, or that he did not do it. To do that we start by recalling the various security notions,
and precise what we expect from stepping capacities, i.e. a user should be able to prove/disprove he
is the author of a signature. We then build a scheme answering those goals from standard building
blocks, namely the certificate from [DP06]3, the Dodis-Yampolskiy Verifiable Random Function [DY05]
and Waters Signature that we prove in an asymmetric bilinear group. We then combine these elements
with the Groth-Sahai methodology to achieve anonymity.

The Delerablée-Pointcheval [DP06]-like certificate will allow delegation of tracing, since a trapdoor,
not enough for signing, enables tracing decision between a signature and an alleged user. Users will also
be able to confirm (step-in) or deny (step-out) being the actual signer, using their signing key only, in

3Such certificate is of the form (xi, yi, Ai = (kgyi )1/γ+xi ) where γ is the secret key of the certification authority, Ω = gγ

the group public key, and yi the user secret key
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Figure 1.2: An Extended Traceable Signature Scheme

a convincing way, which is a new attractive property. To achieve this, we define the notion of unique
identifier, related to each signature, and specific to the user and an additional input.

We need to define a new assumption, the q-Hybrid Hidden Strong Diffie-Hellman (q−HHSDH). While
this assumption is new, we can show it is still quite reasonable, as under the Knowledge-of-Exponent
assumption we show that it is equivalent to the q-Strong Diffie-Hellman.4

The final instantiation more than halves the communication cost of traceable signature. The key to
this constructions is the creation of an ephemeral identifier ID based on the user secret key thanks to
the Dodis-Yampolskiy Verifiable Random Function. Given the correct trapdoor a sub-authority is able
to trace a specific signer thanks to this ID. The Groth-Sahai proofs are used to prove that the secret key
used in the identifier is registered by the authority, and the Waters signature is simply used to sign the
message and provides unforgeability.

We then further improve this scheme in Section 3.3, page 66. For that we have to clarify the original
security requirements by defining proper security games. Granted the previous technique of unique
identifier, we can give a positive answer to the open problem of list signatures in the standard model: if
we make the unique identifier specific to the user and the time-frame, in a deterministic way, then two
signatures by the same user within the same time-frame will have the same identifier, which provides
linkability.

Signature on Randomizable Ciphertexts

Eventually dropping the anonymity of the signer, we then consider a totally different approach where we
want to hide the message. For that purpose, we propose in Chapter 4, page 70 a new primitive called
Signature on Randomizable Ciphertexts: Given a signature on a ciphertext, anyone, knowing neither
the signing key nor the encrypted message, can randomize the ciphertext and adapt the signature to the
fresh encryption.

A pair of a ciphertext and a signature on it can thus be randomized simultaneously and consistently.
Since adapting a signature on one ciphertext to a signature on another ciphertext contradicts the

standard notion of unforgeability for signatures, we define a weaker notion, which still implies the security
of our applications: unforgeability of signatures on randomizable ciphertexts means that the only thing an
adversary can do is produce signatures on encryptions of messages of which he already knows a signature
on an encryption; but he cannot make a signature on an encryption of a new message. Formally, no
adversary can, after querying signatures on ciphertexts of its choice, output a signature on a ciphertext
whose decryption is different from the decryption of all queried ciphertexts.

We then extend our primitive to extractable signatures on randomizable ciphertexts: given the decryp-
tion key dk, from a signature σ(C) on a ciphertext C one can extract a signature σ(M) on the encrypted
plaintext M . This enables the user in a blind-signature scheme to recover (SigExtSC) a signature on the
message after the signer has signed (SignSC) an encryption of it.

4Those notions are described in Section 3.2.2, page 61
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Figure 1.3: (Strong) extractable signatures on randomizable ciphertexts

Symmetric Pairing G
Waters + Linear 9 k + 44

Asymmetric Pairing G1 G2

Waters + ElGamal 6 k + 9 6 k + 7

Table 1.1: Number of group elements required for a ciphertext-signature pair depending on the chosen
instantiation

This notion is called strong, when using the randomness r from the encryption algorithm EncryptSC ,
one can also extract the signature on the plaintext.

We give several instantiations of extractable signatures on randomizable ciphertexts, all of which
are based on weak assumptions. Our constructions use the following building blocks, from which they
inherit their security: Witness-indistinguishable Groth-Sahai proofs for languages over pairing-friendly
groups [GS08] and Waters signatures derived from the scheme in [Wat05] and used in [BW06]. Since
verification of Waters signatures is a statement of the language for Groth-Sahai proofs, these two building
blocks combine smoothly.

The first instantiation of our new primitive is in symmetric pairing-friendly elliptic curves and addi-
tionally uses linear encryption [BBS04]. Both unforgeability and semantic security of this construction
rely solely on the decision linear assumption (DLin). The construction is nearly straightforward. If
one would commit to a Water hash of message together with a bit-per-bit proof of knowledge of this
message, then receives a Waters-like signature of this commitment (i.e. the signer takes C3 which carries
the message, and sends hxCs3 , gs, and then use the decyrption key to recover the signature using the
decryption key, one would obtain a scheme very close to ours. The main difference is that we show for
unforgeability reasons that the first user should also commit to a value based on the verification key
raised to the scalars used in the message commitment.

To avoid redundancy, we omit the instantiation in asymmetric bilinear groups, using ElGamal en-
cryption and the SXDH variant of Groth-Sahai proofs (available in the full version [BFPV11]). While is
has improved efficiency, this setting requires to transfer Waters’ signature scheme to asymmetric groups.
Whereas standard Waters signatures are secure under the computational Diffie-Hellman assumption
(CDH), we prove our variant secure under a slightly stronger assumption, we term CDH+, where some
additional elements in the second group are given to the adversary.

The following table details the size of a ciphertext-signature pair, where the parameter k denotes the
bit length of a message, first in case of an instantiation on a symmetric elliptic curve, and then on an
asymmetric one:

Using our new primitive, we immediately obtain a reasonably efficient round-optimal blind-signature
scheme based on standard assumptions. Moreover, exploiting the fact that our encryption is homomor-
phic, we construct a non-interactive receipt-free universally verifiable e-voting scheme as follows: the user
encrypts his vote, proves its validity, and sends the encryption, a signature on it, and the proof to the vot-
ing centre. The latter can now randomize the ciphertext, adapt both the proof and the user’s signature,
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and publish them. After the results are announced, the user can verify his signature, which convinces
him that the randomized ciphertext still contains his original vote due to our notion of unforgeability;
however he cannot prove to anyone what his vote was.

Later on, we reconsider the Blind-Signature scheme, to further alter it. First, in Section 4.4.1, page 82
we consider a version which achieves partially-blind signatures with perfect blindness while remaining
under standard assumption, using the perfectly hiding instantiation of Groth-Sahai commitments [GS08].
We also widen the model of partially-blind signatures to supplement the predetermined communication
with an on-the-fly public information generated by the signer: the signer can simply include it during
the signing process, even if the user does not want this extra information. In the latter case, the user can
simply discard the signature and start anew. We call this new primitive signer-friendly partially-blind
signatures. This new notion allows to skip the prior agreement and allow the public information to be
set on-the fly. Of course this new notion doesn’t forbid any kind of prior agreement on the public part,
it just strengthens the existing notion.

It is now possible to get rid of the prior agreement on the common piece of information in the signed
message and our instantiation allows the signer to do so in a round-optimal way. These two constructions
being compatible, we can present a round-optimal partially-blind signature with perfect blindness. Our
protocol does not need any pre-processing for the public part of the message. Basically both the user
and the signer can choose a piece of the public part, but instead of having a computational overhead for
the agreement both can simply choose during the 2 flows what they want. The signer can always refuse
to sign something where the user’s public information doesn’t suit him and the user can always choose
not to exploit an uninteresting signature, so a protocol should avoid to waste communication costs when
one can manage without any security loss to stay in a two-flows protocol.

And then, discarding the perfect blindness, we take advantage of this asynchronous property (the user
and the signer can independently choose their inputs) in Section 4.4.2, page 87 and we consider the new
context where the message to be signed comes from several independent sources that cannot communicate
together. We first present a way to obtain a signature on the concatenation of the input messages. We
also present a shorter instantiation which gives a signature on the sum of the input messages. Such a
sum can be useful when working on ballots, sensor informations, . . . . Since we still apply the Waters
signature, this led us to consider the Waters function programmability over a non-binary alphabet, in
a similar way as it was done in [HK08] for the binary alphabet. We prove a negative result on the
(2, 1)-programmability, but a nice positive one on the (1, poly)-programmability, which is of independent
interest.5

1.3 Smooth Projective Hash Function, and Implicit Proof of Knowledge

1.3.1 Motivation

Our previous result while improving the efficiency of previous schemes lead us to a new question. Why
are we using non-interactive proof of knowledge, in an interactive protocol? Is there a way to preserve
round optimality while using a possibly interactive proof. In standard interactive proof of knowledge the
last interaction is a message sent by the prover to the verifier, while this may seem intuitive this induces
an extra round, as in our schemes most of the time, the prover initiates the procedure and so we would
need at least 3 flows to plug such proof. We instead focus on implicit proof of knowledge, where the
verifier may not necessarily learn the veracity of the prover statement, but should be convinced that only
an honest prover can exploit the information requested, to try to build round-optimal privacy-preserving
interactive protocols.

Smooth Projective Hash Function

Smooth projective hash functions (SPHF) were introduced by Cramer and Shoup [CS02] for constructing
encryption schemes. A projective hashing family is a family of hash functions that can be evaluated in
two ways: using the (secret) hashing key, one can compute the function on every point in its domain,
whereas using the (public) projected key one can only compute the function on a special subset of its
domain. Such a family is deemed smooth if the value of the hash function on any point outside the
special subset is independent of the projected key. If it is hard to distinguish elements of the special
subset from non-elements, then this primitive can be seen as special type of zero-knowledge proof system
for membership in the special subset. The notion of SPHF has found applications in various contexts in
cryptography (e.g. [GL03,Kal05,ACP09]).

5cf Section 2.6.4, page 42.
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We present some other applications with privacy-preserving primitives that were already inherently
interactive. And we reconsider the manageable set of languages with those functions, and show that it
can work in some cases where the Groth-Sahai methodology can not be used.

Blind signatures

As explained in the previous section, we are going to present Signatures on Randomizable Ciphertexts
which allow Round-Optimal Blind Signature. However this construction is heavily reliant on the Groth-
Sahai methodology, so while it was a neat improvement when compared to existing solution who were
not producing classical signatures, it does not really fit our efficiency requirements. And as one of our
first results we are going to apply our new methodology for implicit proofs of knowledge to show the
impact on efficiency without weakening the security.

There is a growing field of protocols,around automated trust negotiation, which includes Oblivious
Signature-Based Envelope [LDB03], Secret Handshakes [BDS+03], Password-based Authenticated Key-
Exchange [BM93,BPR00], and Hidden Credentials [BHS04]. Those schemes are all closely related (as if
you tweak two of them, you can produce any of the other protocols [CJT04]).

Oblivious Signature-Based Envelope

Oblivious Signature-Based Envelope (OSBE) were introduced in [LDB03]. It can be viewed as a nice way
to ease the asymmetrical aspect of several authentication protocols. Alice is a member of an organization
and possesses a certificate produced by an authority attesting she is in this organization. Bob wants
to send a private message P to members of this organization. However due to the sensitive nature of
the organization, Alice does not want to give Bob neither her certificate nor a proof she belongs to the
organization. OSBE lets Bob sends an obfuscated version of this message P to Alice, in such a way
that Alice will be able to find P if and only if Alice is in the required organization. In the process,
Bob cannot decide whether Alice does really belong to the organization. The security is usually defined
through 2 mains points: Oblivious, if R0 knows and uses a valid signature σ and R1 does not use such
a valid signature, the sender cannot distinguish an interaction with R0 from an interaction with R1,and
(Weakly) semantically secure, if S0 owns P0 and S1 owns P1, the recipient that does not use a valid
signature cannot distinguish an interaction with S0 from an interaction with S1. We strengthen those
notions by superseding the oblivious notion by allowing the authority to be the adversary.

Secret Handshakes

The concept of Secret Handshakes has been introduced in 2003 by Balfanz, Durfee, Shankar, Smetters,
Staddon and Wong [BDS+03] (see also [JL09, AKB07]). It allows two members of the same group to
identify each other secretly, in the sense that each party reveals his affiliation to the other only if they
are members of the same group. At the end of the protocol, the parties can set up an ephemeral session
key for securing further communication between them and an outsider is unable to determine if the
handshake succeeded.

Password-Authenticated Key Exchange

Password-Authenticated Key Exchange (PAKE) was formalized by Bellovin and Merritt [BM92] and
followed by many proposals based on different cryptographic assumptions (see [ACP09, CCGS10] and
references therein). It allows users to generate a strong cryptographic key based on a shared “human-
memorable” (i.e. low-entropy) password without requiring a public-key infrastructure. In this setting,
an adversary controlling all communication in the network and able to corrupt participants at any time
should not be able to mount an off-line dictionary attack.

A variation was introduced recently, where one user knows a password, and the other a one way
function of it. This way if a server is compromise the password itself is not revealed.

Credential-Authenticated Key Exchange

More recently, Credential-Authenticated Key Exchange (CAKE) were presented by Camenisch, Casati,
Groß and Shoup [CCGS10]. In this primitive, a common key is established if and only if a specific
relation is satisfied between credentials hold by the two players.
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1.3.2 Results and Instantiations

Our main contribution in Part II, page 92 is to define a methodology to do round-optimal implicit proof
of knowledge. We present all our instantiations in a symmetric group, under the DLin assumption and
possibly CDH when we require a signature. However the same can be done in an asymmetric setting
using XDH and CDH+, and no longer SXDH.

Smooth Projective Hash Functions on Commitment

To do our implicit proofs of knowledge we define Smooth Projective Hash Functions on Commitment.
If one would want to draw a parallel with existing Groth-Sahai methodology. We assume we possess
some word W and a witness w that it belongs to a language L. We then commit to W and then send
this commitment. The Verifier will then compute a projection key hp, a hash key hk, his view H of the
hash value. He then sends the prover hp together with the requested information masked by his H. The
prover using his witness w and hp can now compute his own view of the hash value H ′. If indeed w is a
witness that the plaintext W belongs to L then H ′ = H and he can recover the requested information,
otherwise we show he does not learn anything.

Manageable Languages

A direct consequence of those new protocols is to try to extend the set of languages handleable by
our methodology. Abdalla et al. have shown how to manage conjunction and disjunction of languages
in [ACP09], we now have to further consider basic language. In Chapter 5, page 93, we proceed slowly, we
first precise what we call language, and then show how to handle commitment of a valid signature, and
a commitment of a commitment. We show that those two methods can in fact be reduced to checking if
we have a commitment of 1 in a specific group. A direct result is that we can now iterate (and handle
commitment of commitment of commitment), but more importantly this also gives a good intuition on
how to proceed to further expand the basic languages. And we show that we can handle any language
composed of word (composed of elements Yi committed in G, in ci, for i ∈ J1,mK and Zi committed in
GT , in Ci, for i ∈ Jm+ 1, nK) satisfying extended linear pairing equations:(∏

i∈Ak

e(Yi,Ak,i)

)
·

(∏
i∈Bk

Zzk,i

i

)
= Bk, for k ∈ J1, tK.

where Ak,i ∈ G, Bk ∈ GT , and zk,i ∈ Zp, as well as Ak ⊆ J1,mK and Bk ⊆ Jm + 1, nK are public.
Intuitively our method tries to transform any language into the verification of a basic one (most of the
time a linear tuple).

We can see that our methodology can manage languages where words are simultaneously in G and
GT , which was not possible with Groth-Sahai. In fact, we can even show, that in some cases if we
only have word in G (for example a Diffie-Hellman tuple (g, ga, gb, gab)), then we can prove the word
belongs to the language without using any pairing which is a huge improvement, or in case of asymmetric
instantiation we may rely only on XDH and not SXDH (needed by Groth-Sahai), which allows type-II
curves.

In practical instantiations we often have languages with linear pairing equations like e(Y,A) = B,
our methodology would require 3 elements for the commitment, and 2 for the projection key (and so the
implicit proof), while Groth-Sahai methodology would still require 3 elements for the commitment but
also 3 for the proofs, therefore we are more efficient. In addition, we need only one state in the CRS (no
need to juggle between the perfectly binding, hiding instantiation of the commitment key).

In the asymmetric setting, we can manage a little more than linear pairing product equations, in the
sense of Groth-Sahai, as we can handle simultaneous equations of the form:(

m∏
i=1

e(Xi,Bi)

)
·

 n∏
j=1

e(Aj ,Yj)

 ·( o∏
k=1

Zzk
k

)
= gT ,

where Aj ,Bi, gT are public values, in G1, G2 and GT respectively, and Xi,Yj ,Zk are the committed
private values, in G1, G2 and GT respectively.

With this new powerful tool, we can now apprehend several existing problems, and improves current
solutions in Chapter 6, page 102:
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Symmetric Pairing G
Groth-Sahai based 9 k + 24

with SPHF 8 k + 12

Asymmetric Pairing G1 G2

Groth-Sahai based 6 k + 9 6 k + 7
with SPHF 5 k + 6 1

Table 1.2: Number of group elements required for a ciphertext-signature pair depending on the chosen
instantiation

Round-Optimal Blind Signature

To show the efficiency of the method, and the ease of application, we adapt the two Blind Signature
schemes proposed in [BFPV11]. Our approach fits perfectly and decreases significantly the communica-
tional complexity of the schemes (it is divided by more than three in one construction). Moreover the
asymmetric version of the scheme only relies on a weakened security assumptions: the XDH assumption
instead of the SXDH assumption and permits to use more bilinear group settings (namely, Type-II and
Type-III bilinear groups [GPS08] instead of only Type-III bilinear groups for the construction presented
in [BFPV11]).

One can see a nice improvement in the constant part in the DLin instantiation when we use our Smooth
Projective Hash Protocols, one can also see a huge improvement in the asymmetric setting where we
remove nearly all elements in G2 underlying a huge redundancy with the Groth-Sahai approach.

Oblivious Signature-Based Envelope

Another contribution is to clarify and increase the security requirements of an OSBE scheme in Sec-
tion 6.1, page 102. The main improvement residing in some protection for both the sender and the
receiver against the Certification Authority. The OSBE notion echoes directly to the idea of SPHF if
we consider the language L defined by encryption of valid signatures, which is hard to distinguish under
the security of the encryption schemes. We show how to build, from a SPHF on this language, an OSBE
scheme in the standard model with a CRS, this is described quickly in the Figure 1.4, page 11. And we
prove the security of our construction in regards of the security of the commitment (the ciphertext), the
signature and the SPHF scheme. We then show how to build a simple and efficient OSBE scheme relying
on a classical assumption, DLin. To build this scheme, we use the SPHF in our new way, avoiding the
need of costly Groth-Sahai proofs when an interaction is inherently needed in the primitive.

ProjHash(hp, (WLin(ck, vk,M), C, w) = v′

P ′ = Q⊕ v′

Q

σ

hk = HashKG(L, param)

v = Hash(hk, (L, param), c)

P

hp = ProjKG(hk, (L, param), c)

ck, σ; r

Q = P ⊕
v

Commit

σ(M
)

c

Figure 1.4: The sender on the right wants to send a message P to U on the left, if and only if U owns
a signature σ(M) valid under vk.

We can see that our method does not add any other interaction, and so supplement smoothly Groth-
Sahai proofs.
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While OSBE may not be the most used protocols in modern cryptography, there are in fact the
cornerstone of several constructions, and so this results leads us to the following LAKE.

Language Authenticated Key Exchange

We then propose in Section 6.3, page 111 a new primitive that encompasses the previous notion of PAKE
and Secret Handshakes. It is closely related to CAKE and we call it LAKE, for Language-Authenticated
Key-Exchange, since parties establish a common key if and only if they hold credentials that belong
to specific (and possibly independent) languages that the players do not need to agree on prior to the
protocol execution. The definition of the primitive is more practice-oriented than the definition of CAKE
from [CCGS10] but the two notions are very similar6.

PAKE are a special case of LAKE, where each user possess a password pw∗ and expects the other
participant to possess a word in the language L = {pwi}. And Secret Handshakes says that each
user possesses a signature on their identity by a specific authority and expect the user to possess a
valid signature by another authority (possibly the same authority). We add some granularity on the
requirements as the authority can be the same or not, the user identities can be public or not, . . . .

In particular, the new primitive enables privacy-preserving authentication and key exchange protocols
by allowing two members of the same group to secretly and privately authenticate to each other without
revealing this group beforehand.

In order to define the security of this primitive, we use the UC framework and an appropriate definition
for languages that permits to dissociate the public part of the policy, the private common information
the users want to check and the (possibly independent) secret values each user owns that assess the
membership to the languages. We provide an ideal functionality for LAKE and give efficient realizations
of the new primitive (for a large family of languages) secure under classical mild assumptions, in the
standard model (with a common reference string - CRS), with static corruptions.

With this approach, we obtain the most efficient PAKE scheme secure in the standard model with
CRS (improving the schemes from [ACP09,CCGS10] in terms of computational workload, communication
complexity and round complexity).

We also significantly improve the efficiency of several CAKE protocols [CCGS10] and we enlarge
the set of languages for which we can construct practical schemes. Notably, we obtain a very practical
realization of Secret Handshakes that provides very strong security properties (such as forward-secrecy
even in the case of corruption of the group authority), and also a very efficient instantiation of PAKE
protocol resistant to server corruption.

1.4 Extra-Tools

While following our original motivations, we often encounter side ideas which are not necessarily primor-
dial to solve the problem but which may lead to neat improvement in the efficiency of several scheme.

We present in Section 2.6, page 35 some of the tools, we had to build and prove.

Waters Function / Signature

With our modular approach, we have a constant use of Waters signature and its function. We have
many side results around this theme. For example, we proposed and prove the security of an asymmetric
version of the Waters Signature in [BFPV11], and recall it in Section 2.6.3, page 41. Waters is the main
signature in the standard model, and as many protocols try to be efficient and for that are instantiated
over asymmetric bilinear groups, we thought presenting an asymmetric version of this signature might
allow new results.

Another result related to Waters function is about its programmability over a non-binary alphabet.
While in [HK08], Hofheinz and Kiltz have shown the (2, 1) and (1, q)-programmability over a binary
alphabet, we decided to further develop their result when some kind of homomorphic forgeability may
be needed like in wireless (ad hoc) sensor network. We easily show in Section 2.6.4, page 42 that over
a non-binary alphabet Waters is no longer (2, 1)-programmable. We decided to further develop their
probabilistic approach, and for that we rely on the Local Central Limit Theorem [DM95], and we show it
remains (1, q)-programmable, as long as the message bloc size t does not grow to fast 7(This improves the
previous result from [Nac05]). The Local Central Limit Theorem basically provides an approximation
of Pr(

∑
ai = k) for independent and identically distributed random variables ai (It is a version of the

6Actually we believe that any interesting AKE primitive can be formalized in either way.
7i.e. 2t = O(logK).
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Central Limit Theorem in which the conclusion is strengthened from convergence of the law to locally
uniform pointwise convergence of the densities).

With that, we can avoid sequencing a message bit-per-bit on the Waters hash, and so instead of
computing F(M) = u0

∏
umi
i , one can now consider blocks of bits Mi and compute a Waters like hash:

u0

∏
uMi
i or even u0u

M
1 if the message space is moderately small. Another thing, from the same result is

the application to wireless sensor network, where we prove that signing several messages Mi in a Waters
fashion so with σ = (sk(

∏
F(Mi))

s, gs) is still unforgeable under CDH is the number of messages is
reasonable with respect to the security parameter.

Batch Groth-Sahai

The verification of a Groth-Sahai NIZK is relatively slow (lots of pairing computations). We consider
in [BFI+10] a method to batch the verification of several proofs simultaneously, to achieve the verification
faster while not undermining the soundness. We consider the work of Ferrarra et al. in [FGHP09], and
manage to find a way to answer correctly to the question “Are all those proofs of knowledge valid?”.
If the answer is true then except with a negligible probability all the statements are valid, else with a
divide and conquer approach we can deduce which statements are false.

We detail in Section 2.6.1, page 35 our approach around the DLin version of Groth-Sahai proofs, and
then apply in Section 2.6.2, page 38 our results to existing protocols.

Naive computation Batch computation
SXDH

Pairing-product equation 5m+ 3n+ 16 m+ 2n+ 8
Multi-scalar multiplication equation in G1 8m+ 2n+ 14 min(2n+ 9, 2m+ n+ 7)

Quadratic equation 8m+ 8n+ 12 2 min(m,n) + 8
DLin

Pairing-product equation 12n+ 27 3n+ 6
Multi-scalar multiplication equation 9n+ 12m+ 27 3n+ 3m+ 6

Quadratic equation 18n+ 24 3n+ 6

Table 1.3: Number of pairings per verification, where n and m stand for the number of variables.

A surprising result in that our approach leads to significant improvement even on the verification of
a single signature, for example on Groth Signature [Gro07] we go from 68 to 11 pairings involved in the
verification of one single signature, the more impressive result is on the P -signatures where in [BCKL08],
the authors evaluated that the verification of the proof in the DLin instantiation requires the computation
of 126 pairings. With our result, we prove it can be reduced to only 12 for a single signature, and even
3n+ 9 for n signatures.

Multi Cramer-Shoup

We also consider the Cramer-Shoup encryption [CS98] in Section 2.6.5, page 46. For our UC approach,
we need several modification to the original scheme. First we show that if we use a global hash value for
several ciphertexts at once, then the encryption remains CCA, this allows to encrypt vectors at once,
with only one hash computation; while it may seem quite annex as a result, this will reveal to be crucial
when one wants to use Cramer-Shoup for our methodology on languages without a massive growth in
the number of projection keys.

And then following the approach of Lindell in [Lin11], we consider Cramer-Shoup ciphertext com-
posed in fact of two ciphertexts C,and C′, we show that the encryption provides indistinguishability
against partial-decryption chosen-ciphertext attacks when considering such ciphertext C, C′ the adver-
sary is allowed to query the decryption of C and has to provide the decryption of C, C′. C is a valid
Cramer-Shoup ciphertext, while C′ is not as the hash value used is the one corresponding to C. Those
results are further develop in Section 2.6.5, page 46, over both the regular Cramer-Shoup and the linear
one from [Sha07,CKP07]

From this last construction, we manage to construct an interactive commitment which remains effi-
cient while being both extractable and equivocable in Section 2.6.6, page 52. We commit into 3 steps,
first we compute C, C′ as before, where C encrypts M and C′ encrypts 1G, and C′′ as a Pedersen commit-
ment to C′, and send C, C′′. Then the receiver sends a challenge ε. And we answer with C′ and a proof
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of correct opening of the Pedersen. To decommit, one simply combines the random used in both C and
C′ with ε to show that CC′ε is indeed a commitment to M .

?
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In this chapter we will give an overview of the different notions we are going to use throughout this
thesis. We first start by giving a basic guideline for our notations, we follow when possible the standard
conventions, however in some cases they were not fully compatible with each other. We then remind
some classical cryptographic notions, and give some instantiations.

We end this chapter by proposing improvements to those classical instantiations, which are going to
be needed afterwards.

2.1 Notations

Throughout the thesis, we try to have some uniformity in our notations, here are the main conventions
we are going to follow.

• Groups will be denoted by bold letters according to the standard convention. When we don’t
consider any pairing, or we are in the symmetric case, we will use the group G, in case of asymmetric
pairings the groups will be G1 and G2. The target group will always be GT .

15
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• Group generators will be noted by lowercase letters (g ∈ G), possibly with indices denoting the
groups (g1 ∈ G1) or if they are part of sequences (ui)i∈J0,nK.

• Generic public group elements will be noted in uppercase letters A,B ∈ G.

• Columns vectors will be noted by ~u, line vectors by v, and matrices by ~w. This last one is composed
of group elements wij .

• a, b will be used for generic scalars. r, s, t will often be used as the generic randomness used in
encryption and signature schemes. In the other cases, a scalar will be in lowercase greek letters. A
random draw will be noted ρ

$← Zp.

• In algorithms the random coins used will be postponed after the inputs and a semicolon ;. For
example, Encrypt(ek,M ; r), will be an encryption algorithm on a message M , under an encryption
key ek, with randomness r.

• There will possibly be some minor exceptions:

– e will be the non-degenerated bilinear form of pairing.

– K will be the security parameter, 1K will be a string composed of K concatenated 1.

– m or M will often design a message. The message is viewed as its scalar representation so in
Zp.

– p will be a prime number, generally the order of the groups. (In that case p has often K bits.)

– A generic proof of knowledge will be noted π.

– A signature will be noted σ(), a ciphertext or a commitment by C(), we will represent the
Waters function by F().

• If required the group law will be noted ” ·” but may be forgotten, in some cases, to ease the reading;
”� ” will be for the entry-wise product in matrices.

(aij) i∈J1,kK
j∈J1,nK

� (bij)i∈J1,kK
j∈J1,nK

= (aijbij) i∈J1,kK
j∈J1,nK

• We will use 〈·, ·〉 for bilinear products between vectors of either scalars or group elements. For

~a,~b ∈ Zn
p and ~A, ~B ∈ Gn, we define:

〈~a,~b〉 :=
∑n
i=1 ai · bi 〈~a, ~B〉 :=

∏n
i=1 B

ai
i 〈 ~A, ~B〉 :=

∏n
i=1 e(Ai,Bi).

• We will note ” • ” the distributed pairing: Gn×2 ×Gn×2 → G2×2
T :

~c • ~d :=

( ∏n
i=1 e(ci,1, di,1)

∏n
i=1 e(ci,1, di,2)∏n

i=1 e(ci,2, di,1)
∏n
i=1 e(ci,2, di,2)

)
.

• And ”
s• ” its symmetric variant: Gn×3 ×Gn×3 → G3×3

T :

~c
s• ~d :=


∏n
i=1 e(ci,1, di,1)

∏n
i=1 e(ci,1, di,2)

1
2 e(ci,2, di,1)

1
2
∏n
i=1 e(ci,1, di,3)

1
2 e(ci,3, di,1)

1
2∏n

i=1 e(ci,2, di,1)
1
2 e(ci,1, di,2)

1
2

∏n
i=1 e(ci,2, di,2)

∏n
i=1 e(ci,2, di,3)

1
2 e(ci,3, di,2)

1
2∏n

i=1 e(ci,3, di,1)
1
2 e(ci,1, di,3)

1
2
∏n
i=1 e(ci,3, di,2)

1
2 e(ci,2, di,3)

1
2

∏n
i=1 e(ci,3, di,3)


:=
( n∏
i=1

e(ci,j , di,k)
1
2 e(ci,k, di,j)

1
2
)
j∈J1,3K
k∈J1,3K

.

• Concatenation will be noted ”||”.
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2.2 Definitions

2.2.1 Generalities

Hard problem
p A function f : N→ R is said to be negligible, if ∀c ∈ N,∃k0 ∈ N,∀k ≥ k0 : |f(k)| < k−c. A problem is
said to be hard, if there exists no polynomial time algorithm solving it with non-negligible probability. y

Cyclic Group
p A cyclic group is a tuple (p,G, g) where G is a group entirely generated by g where gp = 1G. (The
neutral element of G) y

Bilinear Groups
p A bilinear group is a tuple (p,G1,G2,GT , e, g1, g2) where G1,G2 et GT are cyclic groups of prime order
p, generated respectively by g1,g2 and e(g1, g2), e : G1 × G2 → GT is a non-degenerated bilinear form,
i.e. :

∀X ∈ G1,∀Y ∈ G2,∀λ, µ ∈ Zp : e(Xλ, Y µ) = e(X,Y )λµ

and e(g1, g2) does indeed generate the prime order group GT . In the following we will suppose there
exists a polynomial time algorithm GrpGen which takes 1K as input, and which outputs such bilinear
groups. In this case p is a prime order of K bits.

Such groups are commonly instantiated on elliptic curves on which such pairings can be defined as
bilinear forms. Galbraith et al. [GPS08] have split such instantiations in three main types:

• Type I, where G1 = G2, and g1 = g2, those groups are said to be symmetric and can be simplified
in (p,G,GT , e, g). This first case often leads to problems based on the DLin hypothesis,

• Type II, if there exists a computationally efficient homomorphism from G2 in G1, but none from
G1 to G2. This case often leads to problems based on the XDH hypothesis,

• Type III, if such efficient homomorphism does not exist in either way. This last case often leads to
problems based on the SXDH hypothesis.

y

2.2.2 Security Hypotheses

We are now going to describe common security hypotheses used to prove the security of our protocols,
all except the traceable signatures (section 3, page 55) only rely on those standard hypotheses. All the
first except the discrete logarithm are decisional hypotheses, some computational versions exist also. We
will remind the non-standard hypotheses only when needed in Section 3, page 55.

Discrete Logarithm (DL)
p The Discrete Logarithm hypothesis says that given (p,G, g), and an extra element h ∈ G it is hard to
find µ ∈ Zp such that h = gµ. y

Decisional Linear (DLin [BBS04])
p The Decisional Linear hypothesis says that in a multiplicative group (p,G, g) when we are given

(gλ, gµ, gαλ, gβµ, gψ) for unknown random α, β, λ, µ
$← Zp, it is hard to decide whether ψ = α+ β. y

Decisional Diffie Hellman (DDH [Bon98])
pThe Decisional Diffie-Hellman hypothesis states that in a multiplicative group (p,G, g), given (gµ, gν , gψ)

for unknown µ, ν
$← Zp, it is hard to decide whether ψ = µν. y

External Diffie Hellman in G1 (XDH [BBS04])
p This variant of the previous hypothesis states that in a type II bilinear group, given (gµ1 , g

ν
1 , g

ψ
1 ) for

unknown µ, ν
$← Zp, it is hard to decide whether ψ = µν. (In other words DDH is hard in G1.) A variant

can say that DDH is hard in G2. y

Symmetric External Diffie Hellman (SXDH [ACHdM05])
p This last variant, used mostly in type III bilinear groups, states that DDH is hard in both G1 and G2. y

We also describe two computational hypotheses related to the DDH:
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Computational Diffie Hellman (CDH [DH76])
p The Computational Diffie-Hellman hypothesis states that in a multiplicative group (p,G, g), given

(gµ, gν) for unknown µ, ν
$← Zp, it is hard compute gµν . y

Advanced Computational Diffie-Hellman problem (CDH+ [BFPV11]):
p Let us be given two (multiplicative) groups (G1,G2) of prime order p with (g1, g2) as respective gen-
erators. The CDH+ assumption states that given (g1, g2, g

µ
1 , g

µ
2 , g

ν
1 ), for random µ, ν ∈ Zp, it is hard to

compute gµν1 . y

2.2.3 Universal Composability

In chapter 6, page 102, our main goal will be to provide protocols security in the universal composability
framework. This framework was introduced in [Can01].

This framework can be quite overwhelming. The aim of the following is just to give a brief overview
to have some common conventions.

In the context of multi-party computation, one wants several users Pi with inputs xi to be able
to compute a specific function f(x1, . . . , xn) = (y1, . . . , yn) without learning anything except yi. This
approach was seen for example in Yao’s Millionaires’ problem [Yao82], where two millionaires want to
know who is richer without revealing their respective wealth. So here, xi is the wealth of the millionaire
i, and f simply returns which one is richer (in this specific case y1 = yi = yn).

Instead of following the classical approach which aims to list exhaustively all the expected properties,
Canetti did something else and tried to define how a protocol should ideally work.

For that, he divided the world into two spaces, the real world, where the protocol is run with some
possible attack, and the ideal world where everything would go smoothly. For a good protocol, it should
be impossible to distinguish the real world from the ideal one.

In the ideal world there is an incorruptible entity named the ideal functionality, to which players can
send their inputs privately, and then receive the corresponding output without any kind of communication
between the players. This way the functionality can be set to be correct, without revealing anything
except what is expected.

Functionality

y1

x1

yn
Pn

xn

yixi

P1

Pi

A protocol, in the real world with an adversary, should create an execution similar to the one obtained
by the ideal functionality. This means that the communication between the players should not give more
information than the functionality description, and its output. In this case the protocol runs not really
against the adversary but against the environment who picks the inputs given to the players, and obtains
the outputs. After the interaction the environment should output a bit saying whether he is in the real
world.

The main constraint is that the adversary is now free to interact with the environment whenever
he wants which prevents the simulator from rewinding when needed. The adversary has access to the
communication between the players but not their inputs/outputs, while the environment has only access
to the inputs/outputs.

To prove that a protocol realizes the ideal functionality, we consider an environment Z which can
choose inputs given to all the users and whose goal is to distinguish in which case he receives outputs from
the real world execution with an adversary A, and in which case they come from an ideal execution with
an ideal adversary S who interacts solely with the functionality. Such protocol realizes the functionality
if for all polynomial adversary A, there exists a polynomial simulator S such that no environment Z can
distinguish the real world from the ideal one with a non-negligible probability.

Since players are not individually authenticated, but just afterward if the credentials are mutually
consistent with the two players’ languages, the adversary will be allowed to interact on behalf of any
player from the beginning of the protocol, either with the credentials provided by the environment (static
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corruption) or without (impersonation attempt). As with the Split Functionality [BCL+05], according
to whom sends the first flow for a player, either the player itself or the adversary, we know whether this
is an honest player or a dishonest player (corrupted or impersonation attempt, but anyway controlled
by the adversary). In the adaptive corruption setting, the adversary could get complete access to the
private credentials and the internal memory of an honest player, and then get control of it, at any time.
But we will restrict to the static corruption setting in this thesis. It is enough to deal with most of the
concrete requirements: related credentials, arbitrary compositions, and forward-secrecy.

More precisely, we will work in the UC framework with joint state proposed by Canetti and Ra-
bin [CR03] (for the CRS). Informally, this allows different protocols to have some common states while
preserving their security. Basically for a given session identifier sid we also define sub-session identifier
ssid, and so we have a functionality, possibly generated on the fly, for each ssid.

2.2.4 Standard Cryptographic Primitives

Encryption

An encryption scheme E is described through four algorithms (SetupE ,KeyGenE ,Encrypt,Decrypt):

• SetupE(1
K), where K is the security parameter, generates the global parameters param of the scheme;

• KeyGenE(param) outputs a pair of keys, a (public) encryption key pk and a (private) decryption
key dk;

• Encrypt(pk,M ; ρ) outputs a ciphertext c = C(M), on the message M , under the encryption key pk,
with the randomness ρ;

• Decrypt(dk, c) outputs the plaintext M , encrypted in the ciphertext c or ⊥.

Such encryption scheme is required to have the following security properties:

• Correctness: For every pair of keys (ek, dk) generated by KeyGenE , every messages M , and every
random ρ, we should have Decrypt(dk,Encrypt(ek,M ; ρ)) = M .

• Indistinguishability under Chosen Plaintext Attack [GM84] :
This notion (IND− CPA), formalized by the adjacent game,
states that an adversary shouldn’t be able to efficiently guess
which message has been encrypted even if he chooses the two
original plaintexts.
The advantages are:

AdvindE,A(K) = |Pr[Expind−1
E,A (K) = 1]− Pr[Expind−0

E,A (K) = 1]|

AdvindE (K, t) = max
A≤t

AdvindE,A(K).

Expind−bE,A (K)

1. param← SetupE(1
K)

2. (pk, dk)← KeyGenE(param)
3. (M0,M1)← A(FIND : pk)
4. c∗ ← Encrypt(ek,Mb)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

One might want to increase the requirements on the security of an encryption, in this case the
IND− CPA notion can be strengthened into Indistinguishability under Adaptive Chosen Ciphertext
Attack IND− CCA2 (The non-adaptive notion was introduced in [NY90], while the adaptive one was
introduced a year later in [RS92]):

• IND− CCA2: This notion states that an adversary
should not be able to efficiently guess which mes-
sage has been encrypted even if he chooses the two
original plaintexts, and can ask several decryption
of ciphertexts as long as they are not the challenge
one.

Expind−cca−bE,A (K)

1. param← ESetup(1K)
2. (pk, dk)← KeyGenE(param)
3. (M0,M1)← A(FIND : pk,ODecrypt(·))
4. c∗ ← Encrypt(ek,Mb)
5. b′ ← A(GUESS : c∗,ODecrypt(·))
6. IF (c∗) ∈ CT RETURN 0
7. ELSE RETURN b′

– Where the ODecrypt oracle outputs the decryption of c under the challenge decryption key
dk. The input queries (c) are added to the list CT of decrypted ciphertexts.
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One may want to extend the notion of encryption to a labelled encryption, where the message M
is encrypted but with some extra public information `. This label can be useful to include session
information for example.

Labelled Encryption Scheme

A labelled public-key encryption scheme is defined by four algorithms:

• SetupE(1
K), where K is the security parameter, generates the global parameters param of the scheme;

• KeyGenE(param) generates a pair of keys, the encryption key pk and the decryption key dk;

• Encrypt(`, pk,M ; ρ) produces a ciphertext c on the input message M ∈ M under the label ` and
encryption key pk, using the random coins ρ;

• Decrypt(`, dk, c) outputs the plaintext M encrypted in c under the label `, or ⊥.

Commitment

Commitments allow a user to commit to a value without revealing it, but without the possibility to later
change his mind. It is composed of three algorithms:

• Setup(1K) generates the system parameters, according to the security parameter K;

• Commit(m; r) produces a commitment c on the input message m ∈ M using the random coins

r
$← R;

• Decommit(c,m;w) opens the commitment c and reveals the message m, together with a witness w
that proves the correct opening.

Such a commitment scheme should be both hiding, which says that the commit phase does not leak
any information about m, and binding, which says that the decommit phase should not be able to open
to two different messages. Additional features are also sometimes required, such as non-malleability,
extractability, and/or equivocability. We may also include a label `, which is an additional public
information that has to be the same in both the commit and the decommit phases.

All these properties are satisfied by a scheme that realizes the ideal functionality, in the universal
composability framework, for multiple commitments presented on Figure 2.1, page 21: no information
is leaked from m to any player during the commit phase, so the concrete flows should not leak any
information about the actual committed message m, hence the hiding property, and even the non-
malleability ; the Decommit message automatically reveals the initially committed value, so it is not
possible to change the output, hence the binding property. Now, in the proof that a concrete scheme
emulates the ideal functionality, in order to be able to send the appropriate commit query to Flmcom

from the concrete flows, sent by the adversary on behalf of a corrupted user Pi, the simulator must be
able to extract the actual committed message m, hence the extractability property. Furthermore, from
a commit-query sent by an honest user, the simulator should be able to generate appropriate concrete
flows, without any information about the actual message the environment sent, on behalf of Pi, to the
functionality Flmcom. But when the adversary A asks for the Decommit, the simulator learns the message
m the commitment should be open to, hence the equivocability property.

One can also define a commitment scheme, with a slightly different approach like in the case of
Mercurial Commitments [CHL+05b]. Basically we have some commitment key ck generated by one of
the setup algorithm (and none except the simulator should know which algorithm was used), in one case
we have a equivocable scheme, while in the other we have an extractable scheme. If a user decommit to
a plaintext, any observer can be assured that the commitment can not be extracted to any other value,
but still the commitment may not be extractable:

Mercurial Commitment Scheme
p C = (SetupC ,WISetup,ExSetup,Commit,Extract):

• SetupC(1
K), where K is the security parameter, generates the global parameters param of the scheme,

and more specifically the commitment key ck by running one of the following;

– WISetup(1K), outputs a perfectly hiding commitment key ck;
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The functionality Flmcom is parametrized by a security parameter K. It interacts with an adver-
sary S and a set of parties P1,. . . ,Pn via the following queries:

• Commit phase: Upon receiving a message (Commit : sid, ssid, Pi, Pj , `,m) from Pi
where m ∈ {0, 1}polylog(K), record the tuple (ssid, Pi, Pj ; `,m) and send the message
(receipt; sid, ssid, Pi, Pj ; `) to Pj and S. Ignore any future commit query with the same
ssid from Pi to Pj ;

• Decommit phase: Upon receiving a message (Decommit : sid, ssid, Pi, Pj) from Pi: If a tuple
(ssid, Pi, Pj ; `,m) was previously recorded, then send the message (reveal; sid, ssid, Pi, Pj ;m)
to Pj and S. Otherwise, ignore.

Figure 2.1: Ideal Functionality Flmcom

– ExSetup(1K), outputs an extractable commitment pair of keys (ek, ck), where the extraction
key ek will be kept secret;

• Commit(ck,M ; ρ), outputs a commitment c = C(M) of a message M under a commitment key ck
and a random ρ ∈ R;

• Extract(ek, c), if (ek, ck) were created through ExSetup then it outputsM from c using the extraction
key ek.

• Decommit(c,M ; ρ) decommits c under the randomness ρ; it outputs a plaintext M such that
c = Commit(ck,M ; ρ).

y

In this case we expect the following properties:

• If ExSetup was used to build (ek, ck), for every (ck, c), there should exist a unique M , and a unique
ρ such that c = Commit(ck,M ; ρ) (or Decommit(c,M ; ρ) = M), moreover Extract(ek, c) should
output M , in this case the scheme is perfectly binding.

• The keys ck∗ output by WISetup are indistinguishable from those output by ExSetup and leads
to perfectly hiding commitments ∀c,M, ∃ρ, c = Commit(ck∗,M ; ρ). So, after a generation with
ExSetup, the scheme is computationally hiding.

It should be noted that in the original definition of mercurial commitments, the Decommit algorithm
is called Tease, because it shows the possible opening value without telling if the open algorithm ex-
ists. The main difference with the previous UC commitment, is that the mercurial commitment is not
simultaneously equivocable and extractable.

One may also want to add a randomization property on the commitment:

• The commitment is randomizable, if for every commitment c, randomness ρ′, we are able to
compute RandomC(ck, c; ρ′). If ρ′ is uniformly chosen then c′ is distributed like a fresh commitment
Commit(ck,M ; ρ) when ρ is uniformly chosen.

This last commitment scheme, can be viewed as a lossy encryption [BHY09]. An encryption scheme,
with two possible key generation algorithms, one leading to a regular encryption, the other leading to
a ciphertext independent from the original message. Those keys are assumed to be indistinguishable.
Such scheme is IND− CPA. It can easily be seen that under the lossy key, the adversary can’t have an
efficient strategy to guess which message has been chosen as the ciphertext is independent of the original
message hence the hiding property, while in the regular setting, the decryption key of the encryption
leads to the uniqueness of the plaintext hence the binding property.

Digital Signature

A digital signature scheme S [DH76,GMR88] allows a signer to produce a verifiable proof that he indeed
produced a message. It is described through four algorithms (SetupS ,KeyGenS ,Sign,Verif):

Digital Signature Scheme
p σ = (SetupS ,KeyGenS ,Sign,Verif):
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• SetupS(1K) where K is the security parameter, generates the global parameters param of the scheme,
for example the message space;

• KeyGenS(param), outputs a pair of (sk, vk), where sk is the (secret) signing key, and vk is the
(public) verification key;

• Sign(sk,M ;µ), outputs a signature σ(M), on a message M , under the signing key sk, and some
randomness µ;

• Verif(vk,M, σ) checks the validity of the signature σ with respect to the message M and the
verification key vk. And so outputs a bit.

y

In the following we will expect at least two properties for signatures:

• Correctness: For every pair (vk, sk) generated by KeyGenS , for every message M , and for all
randomness µ, we have Verif(vk,M, Sign(sk,M ;µ)) = 1.

• Strong Existential Unforgeability under Chosen Message
Attacks [SPMLS02]. Even after querying n valid signa-
tures σi on chosen messages Mi, an adversary should not
be able to output a fresh valid signature. To formalize
this notion, we define a signing oracle Sign:

– Sign(vk,m): This oracle outputs a signature on m
valid under the verification key vk. The resulting
pair (m,σ) is added to the signed pair set S ′.

Expst−ufS,A (K)

1. param← SetupS(1K)
2. (vk, sk)← KeyGenS(param)
3. (m∗, σ∗)← A(vk, Sign(vk, ·))
4. b← Verif(vk,m∗, σ∗)
5. IF (m∗, σ∗) ∈ S ′ RETURN 0
6. ELSE RETURN b

The probability of success against this game is denoted by

Succst−ufS,A (K) = Pr[Expst−ufS,A (K) = 1], Succst−ufS (K, t) = max
A≤t

Succst−ufS,A (K).

Or Existential Unforgeability under Chosen Message At-
tacks [GMR88] (EUF− CMA). Even after querying n
valid signatures on chosen messages (Mi), an adversary
should not be able to output a valid signature on a fresh
message M . To formalize this notion, we define a signing
oracle Sign:

– Sign(vk,m): This oracle outputs a signature on m
valid under the verification key vk. The requested
message is added to the signed messages set SM.

ExpeufS,A(K)
1. param← SetupS(1K)
2. (vk, sk)← KeyGenS(param)
3. (m∗, σ∗)← A(vk, Sign(vk, ·))
4. b← Verif(vk,m∗, σ∗)
5. IF m∗ ∈ SM RETURN 0
6. ELSE RETURN b

The probability of success against this game is denoted by

SucceufS,A(K) = Pr[ExpeufS,A(K) = 1], SucceufS (K, t) = max
A≤t

SucceufS,A(K).

Blind Signature

The previous scheme can be extended in several ways. One of them is quite useful in electronic votes,
and e-cash protocols, when someone might want an authority (Bank, Poll centre, . . . ) to sign a specific
message he wants to keep secret. For that, we use the notion of Blind Signature BS introduced by
Chaum [Cha83] for electronic cash in order to prevent the bank from linking a coin to its spender.

Such protocol can easily be derived from digital signatures. Instead of having a signing phase
Sign(sk,M ;µ) we have an interactive phase BSProtocol〈S,U〉 between the user U(vk,M ; ρ) who will
(probably) transmit a masked information on M under some randomness ρ in order to obtain a signa-
ture valid under the verification key vk, and the signer S(sk;µ), who will generate something based on
this value, and his secret key which should lead the user to a valid signature.

Such signatures are correct if when both the user and signer are honest then BSProtocol〈S,U〉 does
indeed lead to valid signature on M under vk.

There are two additional security property, one protecting the signer, the other the user (cf Figure 2.2,
page 23).
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• On one hand, there is an Unforgeability property, where a malicious user shouldn’t be able to
compute n+ 1 valid signatures on different messages after at most n interactions with the signer.

• On the other hand, the Blindness property says that a malicious signer who signed two messages
M0 and M1 shouldn’t be able to decide which one was signed first.

Expbl−bBS,S∗(K)

1. param← BSSetup(1K)
2. (vk,M0,M1)← A(FIND : param)
3. σb ← BSProtocol〈A,U(vk,Mb)〉
4. σ1−b ← BSProtocol〈A,U(vk,M1−b)〉
5. b∗ ← S∗(GUESS : M0,M1);
6. RETURN b∗ = b.

ExpufBS,U∗(K)
1. (param)← BSSetup(1K)
2. (vk, sk)← BSKeyGen(param)
3. For i = 1, . . . , qs, BSProtocol〈S(sk),A(INIT : vk)〉
4.
(
(m1, σ1), . . . , (mqs+1, σqs+1)

)
← A(GUESS : vk);

5. IF ∃i 6= j,mi = mj OR ∃i,Verif(pk,mi, σi) = 0 RETURN 0
6. ELSE RETURN 1

Figure 2.2: Security Games for the Blind Signatures

In [Fis06], Fischlin gave a generic construction of such signatures in a round-optimal way in the
common-reference string (CRS) model. The first practical instantiation of round-optimal blind signa-
tures in the standard model was proposed in [AFG+10] but it relies on non-standard computational
assumptions. In section 4, page 70, we develop the result we presented in [BFPV11], where we achieved
such round-optimality under classical hypothesis and reasonable communication costs. A round-optimal
blind signature protocol is simply composed of two communications, one where the user sends some value
so the signer, and then the signer answers.

Hash Function Family

A hash function family H is a family of functions HK from {0, 1}∗ onto a fix-length output, either {0, 1}k
or Zp.

Universal One-Way [NY89]
p A family is said to be universal one-way if for any adversary A on a family H, it should be hard for
him to pick conveniently a scalar x, such that he is able to find a second-preimage for a random function
HK ∈ H. More precisely, we denote

SuccuowH (A) = Pr[x← A(H),HK
$← H, y ← A(HK) : HK(x) = HK(y)],SuccuowH (t) = max

A≤t
{SuccuowH (A)}.

y

In some cases, we may rely on a stronger property when we can’t postpone the choice of the hash
function in our simulations:

Collision-Resistant
p A family is said to be collision-resistant if for any adversary A on a random function HK

$← H, it is
hard to find a collision. More precisely, we denote

SucccollH (A) = Pr[HK
$← H, (m0,m1)← A(HK) : HK(m0) = HK(m1)], SucccollH (t) = max

A≤t
{SucccollH (A)}.

y

Pseudo-Random Function Family [GGM84]

A pseudo-random function family F is a family of functions Fk : X → Y , such that a random function in
F is indistinguishable from a random function in the set Y X of functions from X into Y . More precisely,
we consider an adversary A able to make q queries to the function f within time t, and we denote

AdvprfF (A) = |Pr[Fk
$← F : 1← AFk()]− Pr[f

$← Y X : 1← Af ()]|, AdvprfF (q, t) = max
A≤t
{AdvprfF (A)}.

If one is able to add a proof π showing that the output of the function was generated honestly, this
defines a Verifiable Random Function [MRV99].
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Smooth Projective Hash Functions [CS02]

Smooth projective hash functions (SPHF) were introduced by Cramer and Shoup [CS02] for constructing
encryption schemes. A projective hashing family is a family of hash functions that can be evaluated in
two ways: using the (secret) hashing key, one can compute the function on every point in its domain,
whereas using the (public) projected key one can only compute the function on a special subset of its
domain. Such a family is deemed smooth if the value of the hash function on any point outside the
special subset is independent of the projected key. The notion of SPHF has found applications in various
contexts in cryptography (e.g. [GL03, Kal05, ACP09]), and we will rely on it, for our constructions in
part II, page 92

Smooth Projective Hashing System
p A Smooth Projective Hash Function over a language L ⊂ X, onto a set G, is defined by five algorithms
(SPHFSetup,HashKG,ProjKG,Hash,ProjHash):

• SPHFSetup(1K) where K is the security parameter, generates the global parameters param of the
scheme, and the description of an NP language L;

• HashKG(L, param), outputs a hashing key hk for the language L;

• ProjKG(hk, (L, param),W ), derives the projection key hp, possibly depending on the word W [GL03,
ACP09] thanks to the hashing key hk.

• Hash(hk, (L, param),W ), outputs a hash value v ∈ G, thanks to the hashing key hk, and W

• ProjHash(hp, (L, param),W,w), outputs the hash value v′ ∈ G, thanks to the projection key hp and
the witness w that W ∈ L.

y

In the following, we consider L as a hard-partitioned subset of X, i.e. it is computationally hard to
distinguish a random element in L from a random element in X \ L.

A Smooth Projective Hash Function SPHF should satisfy the following properties:

• Correctness: Let W ∈ L and w a witness of this membership. Then, for all hashing keys hk and
associated projection keys hp we have Hash(hk, (L, param),W ) = ProjHash(hp, (L, param),W,w).

• Smoothness: For all W ∈ X \ L the following distributions are statistically indistinguishable:

∆0 =

{
(L, param,W, hp, v)

param = SPHFSetup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W ), v = Hash(hk, (L, param),W )

}
∆1 =

{
(L, param,W, hp, v)

param = SPHFSetup(1K), hk = HashKG(L, param),

hp = ProjKG(hk, (L, param),W ), v
$← G

}
.

This is formalized by

Advsmooth
SPHF (K) =

∑
V ∈G

∣∣∣∣Pr
∆1

[v = V ]− Pr
∆0

[v = V ]

∣∣∣∣ is negligible.

• Pseudo-Randomness: If W ∈ L, then without a witness of membership the two previous distri-
butions should remain computationally indistinguishable: for any adversary A within reasonable
time

AdvprSPHF,A(K) = |Pr
∆1

[A(L, param,W, hp, v) = 1]− Pr
∆0

[A(L, param,W, hp, v) = 1]| is negligible.

Abdalla et al. [ACP09] explained how to combine SPHF to deal with conjunctions and disjunctions
of the languages. In the following we simply recall those results:

Let us assume we have two Smooth Projective Hash Functions, defined by SPHF1 and SPHF2,
on two languages, L1 and L2 respectively, both subsets of X, with hash values in the same group
(G,⊕). We note W an element of X, wi a witness that W ∈ Li, hki = HashKGi(Li, param) and
hpi = ProjKGi(hki, (Li, parami),W ).

We can then define the SPHF on L = L1 ∩ L2, where w = (w1, w2) as:
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• SPHFSetup(1K), param = (param1, param2), and L = L1 ∩ L2;

• HashKG(L, param): hk = (hk1, hk2)

• ProjKG(hk, (L, param),W ): hp = (hp1, hp2)

• Hash(hk, (L, param),W ): Hash1(hk1, (L1, param1),W )⊕ Hash2(hk2, (L2, param2),W )

• ProjHash(hp, (L, param),W,w = (w1, w2)):

ProjHash1(hp1, (L1, param1),W,w1)⊕ ProjHash2(hp2, (L2, param2),W,w2)

We can also define the SPHF on L = L1 ∪ L2, where w = w1 or w = w2 as:

• SPHFSetup(1K), param = (param1, param2), and L = L1 ∪ L2;

• HashKG(L, param): hk = (hk1, hk2)

• ProjKG(hk, (L, param),W ): hp = (hp1, hp2, hp∆) where

hp∆ = Hash1(hk1, (L1, param1),W )⊕ Hash2(hk2, (L2, param2),W )

• Hash(hk, (L, param),W ): Hash1(hk1, (L1, param1),W )

• ProjHash(hp, (L, param),W,w): If W ∈ L1, ProjHash1(hp1, (L1, param1),W,w1),
else (if W ∈ L2), hp∆ 	 ProjHash2(hp2, (L2, param2),W,w2)

2.3 Classical Instantiations

2.3.1 Waters Signature

To sign scalar message in the standard model, we often use Waters Signatures [Wat05]. This signature
scheme is defined by four algorithms:

Waters Signature Scheme
p S = (SetupS ,KeyGenS ,Sign,Verif):

• SetupS(1K), where K is the security parameter, generates the global parameters param of the
scheme, and more specifically the bilinear group (p,G,GT , e, g), an extra generator h, and genera-
tors (ui)J0,kK for the Waters function, where k is a polynomial in K, F(m) = u0

∏
i∈J1,kK u

mi
i , where

m = (m1, . . . ,mk) ∈ {0, 1}k.

• KeyGenS(param) picks a random x
$← Zp and outputs the secret key sk = Y = hx, and the

verification key vk = X = gx;

• Sign(sk,m;µ) outputs a signature σ(m) = (Y F(m)µ, g−µ);

• Verif(vk,m, σ) checks the validity of σ, by checking if the following pairing equation holds: e(g, σ1) ·
e(F(m), σ2) ?= e(X,h)

y

Theorem 2.3.1 This scheme is EUF− CMA under the CDH assumption.

Knowledge of m is not mandatory to sign and verify, only F(m) is required. However as m is required
in the security proof, if only F(m) is used an additional proof of knowledge of m, Πm should be added,
and so we indeed sign (F(m),Πm), inviting to some transformations leading to blind signatures as we
will see in section 4, page 70.

We will show in section 2.6.4, page 42, how to extend the security proof to a non-binary alphabet
with a little alteration to the [HK08] approach where we will base our demonstration on the local central
limit theorem. This will drastically shorten the size of the public key, by decreasing the number of ui.

Theorem 2.3.2 Waters Signature is randomizable if we define:

• Random(vk,F(m), σ = (σ1, σ2);µ′) outputs σ′ = (σ1 · F(m)µ
′
, σ2 · g−µ

′
).
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Proof: We simply have:

σ = Sign(sk,F(m);µ) ⇒ Random(vk,F(m), σ;µ′) = Sign(sk,F(m);µ+ µ′ mod p).

Due to the additive law in Zp, fresh signature distribution is indistinguishable from randomized one. �

We have introduced in [BFPV11], some variants of Waters signature, particularly one in an asym-
metrical setting (Type II, III). It is described in section 2.6.3, page 41

2.3.2 Pedersen Commitment

The Pedersen commitment [Ped92] is an equivocable commitment:

• Setup(1K) generates a group G of order p, with two independent generators g and ζ;

• Commit(m; r), for a message m
$← Zp and random coins r

$← Zp, produces a commitment c = gmζr;

• Decommit(c,m; r) outputs m and r, which opens c into m, with checking ability: c ?= gmζr.

This commitment is computationally binding under the discrete logarithm assumption: two different
openings (m, r) and (m′, r′) for a commitment c, leads to the discrete logarithm of ζ in basis g, that is
equal to (m′ −m) · (r − r′)−1 mod p. Granted this logarithm as additional information from the setup,
one can equivocate any dummy commitment.

2.3.3 ElGamal Encryption / Commitment

Encryption

ElGamal encryption [ElG85] is defined by the following four algorithms:

• Setup(1K): The scheme needs a multiplicative group (p,G, g),. The global parameters param consist
of these elements (p,G, g).

• KeyGenE(param): Chooses one random scalar µ
$← Zp, which define the secret key dk = µ, and the

public key pk = X = gµ.

• Encrypt(pk = X,M ;α): For a message M ∈ G and a random scalar α
$← Zp, computes the

ciphertext as c =
(
c1 = XαM, c2 = gα

)
.

• Decrypt(dk = µ, c = (c1, c2)): One computes M = c1/(c
µ
2 ).

As shown by Boneh [Bon98], this scheme is IND− CPA under the hardness of DDH.

Theorem 2.3.3 This encryption is randomizable:

• Random(ek,M, c;α′) outputs c′ = (c1 ·Xα′ , c2 · gα
′
), for random α′

$← Zp.

One can easily see that this is equivalent to a fresh encryption with random (α+ α′).

Cramer-Shoup Encryption

The Cramer-Shoup encryption scheme [CS98] is an IND− CCA2 version of the ElGamal Encryption. We
present it here as a labeled public-key encryption scheme, the classical version is done with ` = ∅.

• Setup(1K) generates a group G of order p, with a generator g

• KeyGenE(param) generates (g1, g2)
$← G2, dk = (x1, x2, y1, y2, z)

$← Z5
p, and sets, c = gx1

1 gx2
2 ,

d = gy1

1 gy2

2 , and h = gz1 . It also chooses a Collision-Resistant hash function HK in a hash family H
(or simply a Universal One-Way Hash Function). The encryption key is ek = (g1, g2, c, d, h,HK).

• Encrypt(`, ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp, the ciphertext is C =
(`,u = (gr1, g

r
2), e = M · hr, v = (cdξ)r), where v is computed afterwards with ξ = HK(`,u, e).

• Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether ux1+ξy1

1 · ux2+ξy2

2
?= v. If

the equality holds, one computes M = e/(uz1) and outputs M . Otherwise, one outputs ⊥.

The security of the scheme is proven under the DDH assumption and the fact the hash function used
is a Universal One-Way Hash Function.
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Commitment

A doubled-version of this encryption may be used to allow mercurial commitments.

Commitment Scheme
p C = (SetupC ,WISetup,ExSetup,Commit,Extract):

• SetupC(1
K), the global parameters param consist of these elements (p,G, g), the commitment key

ck is defined by running one of the following;

– WISetup(1K) picks (µ, ν)
$← Z2

p outputs a perfectly hiding commitment key ck = (u1,1 =
g, u1,2 = gµ, u2,1 = gν , u2,2 = gµν+1);

– ExSetup(1K) picks (µ, ν)
$← Z2

p outputs a perfectly binding commitment key ck = (u1,1 =
g, u1,2 = gµ, u2,1 = gν , u2,2 = gµν), and the extraction key is ek = µ;

• Commit(ck,M ;α, β), outputs a commitment c = (uα1,1u
β
2,1,Muα1,2u

β
2,2);

• Extract(ek, c), if (ek, ck) were created through ExSetup then it computes M = c2c
−µ
1 .

y

Such instantiation perfectly fits the previous commitment definition:

• In the case of an extractable setup, we simply have a standard ElGamal encryption where the
encryption scalar is α+ νβ, so it is indeed perfectly binding.

• In the case of a hiding setup, the extra 1 in u2,2 leads to a mask of M by gβ , which leads to an
extra degree of freedom in the system, and so with this key the commitments are perfectly hiding.

• The two cases are indistinguishable under the DDH assumption.

Like in the case of the ElGamal encryption, this scheme is randomizable.

In the following to ease the notation, the commitment key will be noted (u1 = (u1,1, u1,2),u2 =

(u2,1, u2,2)) ∈ G2×2, and a commitment C(M) := (1,M)� uα1 � uβ2 = (uα1,1 · u
β
2,1,Muα1,2u

β
2,2).

2.3.4 Linear Encryption / Commitment

Encryption

Linear encryption is defined by the four algorithms:

• Setup(1K): The scheme needs a multiplicative group (p,G, g). The global parameters param consist
of these elements (p,G, g).

• KeyGenE(param): Choose two random scalars µ, ν
$← Zp, which define the secret key dk = (µ, ν),

and the public key pk = (X1 = gµ, X2 = gν).

• Encrypt(pk = (X1, X2),M ;α, β): For a message M ∈ G and random scalars α, β
$← Z2

p, defines the

ciphertext as c =
(
c1 = Xα

1 , c2 = Xβ
2 , c3 = gα+β ·M

)
.

• Decrypt(dk = (µ, ν), c = (c1, c2, c3)): One computes M = c3/(c
1/µ
1 c

1/ν
2 ).

As shown by Boneh, Boyen and Shacham [BBS04], this scheme is semantically secure against chosen-
plaintext attacks (IND− CPA) under the hardness of DLin.

Theorem 2.3.4 This encryption is randomizable:

• Random(ek,M, c;α′, β′) outputs c′ = (c1 ·Xα′

1 , c2 ·Xβ′

2 , c3 · gα
′+β′), for random α′, β′

$← Z2
p.

One can easily see that this is equivalent to a fresh encryption with random (α+ α′, β + β′).



28 Technical Introduction 2.4

Linear Cramer-Shoup Encryption (LCS).

The Linear Cramer-Shoup encryption scheme [CKP07,Sha07] is the equivalent of Cramer-Shoup relying
on the linear encryption. Once again we directly present the labeled version

• Setup(1K) generates a group G of order p, with three independent generators (g1, g2, g3)
$← G3;

• KeyGenE(param) generates dk = (x1, x2, x3, y1, y2, y3, z1, z2, z3)
$← Z9

p, and sets, for i = 1, 2, ci =
gxi
i g

x3
3 , di = gyii g

y3

3 , and hi = gzii g
z3
3 . It also chooses a hash function HK in a collision-resistant

hash family H (or simply a Universal One-Way Hash Function). The encryption key is ek =
(c1, c2, d1, d2, h1, h2,HK).

• Encrypt(`, ek,M ; r, s), for a message M ∈ G and two random scalars r, s
$← Zp, the ciphertext is

C = (u = (gr1, g
s
2, g

r+s
3 ), e = M · hr1hs2, v = (c1d

ξ
1)r(c2d

ξ
2)s), where v is computed afterwards with

ξ = HK(`,u, e).

• Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether ux1+ξy1

1 ·ux2+ξy2

2 ·ux3+ξy3

3
?=

v. If the equality holds, one computes M = e/(uz11 u
z2
2 u

z3
3 ) and outputs M . Otherwise, one outputs

⊥.

This scheme is indistinguishable under chosen-ciphertext attacks, under the DLin assumption and if one
uses a collision-resistant hash function (or simply a Universal One-Way Hash Function).

We will present in section 2.6.5, page 46, a revised -version of this scheme where we use a global hash
to encrypt several messages.

Commitment

A doubled-version of this encryption may be used to allow mercurial commitments.

Commitment Scheme
p C = (SetupC ,WISetup,ExSetup,Commit,Extract):

• SetupC(1
K), the global parameters param consist of (p,G, g), the commitment key ck is defined by

running one of the following;

– WISetup(1K) picks (µ, ν, ρ, τ)
$← Z4

p outputs a perfectly hiding commitment key ck = (u1,1 =
gµ, u2,2 = gν , u3,1 = gµρ, u3,2 = gντ , u3,3 = g1+ρ+τ );

– ExSetup(1K) picks (µ, ν, ρ, τ)
$← Z4

p outputs a perfectly binding commitment key ck = (u1,1 =
gµ, u2,2 = gν , u3,1 = gµρ, u3,2 = gντ , u3,3 = gρ+τ ), and the extraction key is ek = (µ, ν);

• Commit(ck,M ;α, β, γ), outputs a commitment c = (uα1,1u
γ
3,1, u

β
2,2u

γ
3,2, g

α+βuγ3,3M);

• Extract(ek, c), if (ek, ck) were created through ExSetup then it computes c3/(c
1/µ
1 c

1/ν
2 ) = M .

y

Such instantiation perfectly fits the previous commitment definition:

• In the case of an extractable setup, we simply have a standard linear encryption where the encryp-
tion scalars are respectively α+ ργ, β + τγ, so it is indeed perfectly binding.

• In the case of a hiding setup, the extra 1 in u3,3 leads to a mask of M by gγ , which leads to an
extra degree of freedom in the system, and so with this key the commitments are perfectly hiding.

• The two cases are indistinguishable under the DLin assumption.

Like in the case of the linear encryption, this scheme is randomizable.
In the following to ease the notation, the commitment key ck will be noted (u1 = (u1,1, 1, g),u2 =

(1, u2,2, g),u3 = (u3,1, u3,2, u3,3)) ∈ G3×3, and a commitment C(M) := (1, 1,M) � uα1 � uβ2 � uγ3 =

(uα1,1 · u
γ
3,1, u

β
2,2 · u

γ
3,2,M · gα+β · uγ3,3).
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2.4 Zero-Knowledge and Witness Indistinguishable Proofs

Zero-Knowledge Proofs are a powerful tool introduced by Goldwasser, Micali and Rackoff in [GMR89].
They let a user prove the veracity of a statement S without leaking any additional information. They
have found many applications in various protocols since (Anonymous Credentials, Anonymous Signatures
(Group Signatures, Ring Signatures, Blind Signatures,. . . ), Online Voting, PAKE, Proof of a shuffle, . . . ).

Such proofs are expected to have three properties:

• Completeness: If S is true, the honest verifier will be convinced of this fact.

• Soundness: If S is false, no cheating prover can convince the honest verifier that it is true except
with negligible probability.

• Zero-knowledge: Anything that is feasibly computable from the proof is also feasibly computable
from the assertion itself .

An upgrade to this kind of proofs can be obtained by removing the interaction between the prover
and the verifier. In this case we speak about NIZK, Non-interactive Zero-Knowledge Proof. Fiat
Shamir [FS87] presented an heuristic showing how to transform Interactive proofs into Non-Interactive
ones. Several approaches have been proposed since ([BFM90], [DDO+01],. . . ), but they are all rather
inefficient, until Groth-Sahai methodology in [GS08] to prove pairing equations.

Zero-Knowledge Proofs can also be relaxed into Witness-Indistinguishable proofs [FS90], where the
proof hides the witness used to prove a statement. Efficient Groth-Sahai proofs are only NIWI and not
NIZK.

To formally define a randomizable WI/ZK proof system Proof for some commitment scheme Com
on equations, we need additional algorithms Prove,Verify. Prove takes as input several values Mi sat-
isfying some equations E, a commitment key ck, a valid description E of the equation E (for clarity
in the following we will identify the description to the equation and so write E as the input used in
algorithms), some randomness µi, and outputs a proof π, together with ~c a matrix of commitments to
the witnesses. Verify then takes as inputs this matrix ~c, the commitment key ck together with the proof
π, the description E and outputs either 0 or 1 depending on the validity of the proof. We may define
as before a randomization algorithm, RandProof which outputs randomized values of ~c, π for some new
randomness.

We require four security properties:

• Completeness: For every honest scenario, i.e. values Mi satisfying E, and every randomness µi, we
should have Verify(Prove((Mi), ck, E;µi), ck, E) = 1.

• Soundness: If the commitment scheme is initialized in the perfectly binding setup. Then for all
valid proofs π, we have (Mi) = Extract(ek,~c), such that (Mi) does indeed verify E. (In other words,
if the initial values Mi does not verify E, it should be impossible to generate a valid proof π.)

• Randomizability: As usual a randomized proof should have the same distribution as a fresh one.

WI Witness-Indistinguishability: If ck is generated by the perfectly hiding setup, and there exists both
(Mi), (M

′
i) verifying an equation E, and (µi), (νi) such that ∀i,Com(ck,Mi, µi) = Com(ck,M ′i , νi),

then π and π′ should have the same distribution.

ZK Zero-Knowledge: If ck is generated by the perfectly hiding setup, then for all E, (Mi) ∈ LE , (M ′i) 6∈
LE and (µi), (νi) such that ∀i,Com(ck,Mi, µi) = Com(ck,M ′i , νi), π and π′ should have the same
distribution.

2.4.1 Groth-Sahai Methodology

Groth and Sahai have introduced a methodology to build Non-Interactive Zero-Knowledge / Witness
Indistinguishable proofs of satisfiability of pairing-product like equations. The three types of equations
handled by such proofs are the following:

A pairing-product equation over variables ~X = (X1, . . . ,Xm) ∈ Gm1 and ~Y = (Y1, . . . ,Yn) ∈ Gn2 is of the
form

〈 ~A, ~Y〉 · 〈 ~X , ~B〉 · 〈 ~X ,Γ~Y〉 = tT , (2.1)

defined by constants ~A ∈ Gn
1 , ~B ∈ Gm

2 , Γ = (γi,j)1≤i≤m
1≤j≤n

∈ Zm×n
p and tT ∈ GT .
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A multi-scalar multiplication equation over variables ~y ∈ Zn
p and ~X ∈ Gm

1 is of the form

〈~y, ~A〉 · 〈~b, ~X〉 · 〈~y,Γ ~X〉 = T, (2.2)

defined by the constants ~A ∈ Gn
1 , ~b ∈ Zm

p , Γ ∈ Zm×n
p and T ∈ G1.

A multi-scalar multiplication equation in group G2 is defined analogously.

A quadratic equation in Zp over variables ~x ∈ Zm
p and ~y ∈ Zn

p is of the form

〈~a, ~y 〉+ 〈~x,~b 〉+ 〈~x,Γ~y 〉 = t, (2.3)

defined by the constants ~a ∈ Zn
p , ~b ∈ Zm

p , Γ ∈ Zm×n
p and t ∈ Zp.

Groth and Sahai have detailed generic construction of the proofs π and specific instantiations under
different security assumptions. We will focus on those based on linear commitments and ElGamal
commitments as our first primitives are based on such proofs, and so totally skip those presented in
composite order groups.

ElGamal Instantiation

In order to generate a proof of such relations, the methodology invites us to commit to the witness
vectors ~X with randomness ~R, and to ~Y with ~S with two double ElGamal commitments scheme (recalled
in 2.3.3, page 27), one in G1 and one in G2 with respective commitment keys u ∈ G2×2

1 and v ∈ G2×2
2 .

As both need to be semantically secure, we will work under the SXDH assumption, so on type III curves.

We will note ι1(g1)=(11, g1), ι2(g2)=(12, g2), ιT (tT ) :=

(
1T 1T
1T tT

)
and focus on product pairing equa-

tions.
For that we have:

• Prove((Xi), (Yj), (u,v), E; (Ri), (Sj), T ∈ Z2×2
p ) outputs a proof π = (φ, θ), together with ~c, ~d ∈

G2×m
1 × G2×n

2 commitments to the witnesses with respective randomness ~R ∈ Z2×m, ~S ∈ Z2×n.
The proof is at most composed of four elements in G1 and four in G2.

φ = ~R>ι2( ~B) + ~R>Γι2(~Y) + (~R>Γ~S − T>)v

θ = ~S>ι1( ~A) + ~S>Γ>ι1( ~X ) + Tu

• Verify((~c, ~d), ck, E, (φ, θ)) checks if:(
ι1( ~A) • ~d

)
�
(
~c • ι2( ~B)

)
�
(
~c • Γ~d

)
= ιT (tT )�

(
~u • φ

)
�
(
θ • ~v

)
• RandProof outputs randomized values of ~c, ~d, π for some new randomness ( ~R′, ~S′, T ′). Given the

definition of φ, θ this randomization is quite straightforward

The Soundness and the Witness Indistinguishability of such a proof directly come from the security
of the commitment, and the extra randomness T .

Intuitively each term in the proof is here to compensate some part introduced by the randoms in
the verification equation: ~R>ι2( ~B) will be matched with the random part in

(
~c • ι2( ~B)

)
, ~S>ι1( ~A) with(

ι1( ~A) • ~d
)
, ~R>Γι2(~Y), ~S>Γ>ι1( ~X ) will each annihilate the extra terms in the pairing between one of

the plaintext with the commitment of the other, while ~R>Γ~Sv will remove the pairing between the two
randoms. (

(
~c • Γ~d

)
can be viewed as ~Xi • Γ~d � ~c • Γ ~Yi � ~R � Γ~S), the extra terms in T are here to

randomize the proof.

Examples

1. Proof of equality: Let’s consider an equation like e(X1, g2)/e(X2, g2) = 1T . We commit to Xi
in G1 by computing ci = ι1(Xi) + Riu = (u

R1,i

1,1 u
R2,i

2,1 ,Xiu
R1,i

1,2 u
R2,i

2,2 ). The proof is then: φ =

R>ι2(B) − T>v, θ = Tu. In this case θ does not hide the value T , therefore we can only use

π = φ = R>ι2( ~B). Furthermore due to the nature of ι2, π =

(
12 g

R1,1+R2,1

2

12 g
R1,2+R2,2

2

)
, and so we only

need 2 group elements in G2 for the proof. (The initial equation without any variable Y ∈ G2 is
called a linear pairing product equation.)
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2. Proof of a Diffie Hellman tuple: Let’s consider an equation like e(X , g2)/e(g1,Y) = 1T .

(a) Picks random (r1, r2, s1, s2)
$← Z4

p and computes the commitments to the variables:

c = (ur11,1u
r2
2,1,Xu

r1
1,2u

r2
2,2),d = (vs11,1v

s2
2,1,Yv

s1
1,2v

s2
2,2),

(b) The equation is a pairing product equation, where A = g−1
1 ,B = g2 and Γ is null, so he now

picks T
$← Z2×2

p and computes:

φ = R>B−T>v =

(
v
−t1,1
1,1 v

−t2,1
2,1 gr12 v

−t1,1
1,2 v

−t2,1
2,2

v
−t1,2
1,1 v

−t2,2
2,1 gr22 v

−t1,2
1,2 v

−t2,2
2,2

)
,

θ = S>A+ Tu =

(
u
t1,1
1,1 u

t1,2
2,1 g−s11 u

t1,1
1,2 u

t1,2
2,2

u
t2,1
1,1 u

t2,2
2,1 g−s21 u

t2,1
1,2 u

t2,2
2,2

)

(c) To check the proof, one needs to check if:[
ι1(A) • ~d

]
+
[
~c • ι2(B)

]
?=
[
u • π

]
+
[
θ • v

]
.

In other words, does L =
[
(11, g

−1
1 ) • (vs11,1v

s2
2,1, Y v

s1
1,2v

s2
2,2)
]
�
[
(ur11,1u

r2
2,1, Xu

r1
1,2u

r2
2,2) • (12, g2)

]
equal R =

[
u • π

]
�
[
θ • v

]
?

L =

(
1T 1T

e(g−1
1 , vs11,1v

s2
2,1) e(g−1

1 , Y vs11,2v
s2
2,2)

)
�
(

1T e(ur11,1u
r2
2,1, g2)

1T e(Xur11,2u
r2
2,2, g2)

)
=

(
1T e(ur11,1u

r2
2,1, g2)

e(g−1
1 , vs11,1v

s2
2,1) e(g−1

1 , vs11,2v
s2
2,2) · e(ur11,2u

r2
2,2, g2)

)
�
(

1T 1T
1T e(g−1

1 , Y ).e(X, g2)

)
R =

(
e(u1,1, v

−t1,1
1,1 v

−t2,1
2,1 ) · e(u2,1, v

−t1,2
1,1 v

−t2,2
2,1 ) e(u1,1, g

r1
2 v
−t1,1
1,2 v

−t2,1
2,2 ) · e(u2,1, g

r2
2 v
−t1,2
1,2 v

−t2,2
2,2 )

e(u1,2, v
−t1,1
1,1 v

−t2,1
2,1 ) · e(u2,2, v

−t1,2
1,1 v

−t2,2
2,1 ) e(u1,2, g

r1
2 v
−t1,1
1,2 v

−t2,1
2,2 ) · e(u2,2, g

r2
2 v
−t1,2
1,2 v

−t2,2
2,2 )

)

�

(
e(u

t1,1
1,1 u

t1,2
2,1 , v1,1) · e(ut2,11,1 u

t2,2
2,1 , v2,1) e(u

t1,1
1,1 u

t1,2
2,1 , v1,2) · e(ut2,11,1 u

t2,2
2,1 , v2,2)

e(g−s11 u
t1,1
1,2 u

t1,2
2,2 , v1,1).e(g−s21 u

t2,1
1,2 u

t2,2
2,2 , v2,1) e(g−s11 u

t1,1
1,2 u

t1,2
2,2 , v1,2).e(g−s21 u

t2,1
1,2 u

t2,2
2,2 , v2,2)

)

=

(
1T e(ur11,1u

r2
2,1, g2)

e(g−1
1 , vs11,1v

s2
2,1) e(g−1

1 , vs11,2v
s2
2,2).e(ur11,2u

r2
2,2, g2)

)

And so L = R if and only if

(
1T 1T
1T e(g−1

1 , Y ).e(X, g2)

)
=

(
1T 1T
1T 1T

)
.

So if indeed e(g−1
1 , Y ).e(X, g2) = 1T .

Linear instantiation

Due to the fact that G1 = G2 = G in this setting, the equations (2.1), (2.2) and (2.3) simplify to the
following equations respectively:

〈 ~A, ~Y〉 · 〈~Y,Γ~Y〉 = tT

〈~a, ~Y〉 · 〈~x, ~B〉 · 〈~x,Γ~Y〉 = T

〈~x,~b〉+ 〈~x,Γ~x〉 = t

In order to generate a proof of such relation, the methodology invites us to commit to the witness
vectors ~Xi with a linear commitment scheme (recalled in section 2.3.4, page 28) in G with a commitment
key u ∈ G3×3. We will work under the DLin assumption, so we can use type I curves.

We define ι(X ) := (1, 1,X ), ιT (tT ) :=

1 1 1
1 1 1
1 1 tT

.

We also define H1 :=

 0 1 0
−1 0 0
0 0 0

 , H2 :=

 0 0 1
0 0 0
−1 0 0

 , H3 :=

0 0 0
0 0 1
0 −1 0

, it should be noted

that u
s• Hiu = 0, and the Hi are antisymmetric.
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To commit to X ∈ G, one chooses randomness R = (α, β, γ)
$← Z3

p and sets cX := ι(X )�uα1 �uβ2�uγ3 ,

to commit x ∈ Zp, one chooses randomness S = (η, θ)
$← Z2

p and sets dx := ι′(x) � uη1 � uθ2. We define
the 3× 2 matrix v = (u1,u2).

For that we have:

• Prove( ~X , ck, E;R, T ∈ Z3
p) outputs a proof π, together with ~c ∈ G3×n matrix of commitments to

the witnesses. The proof is at most composed of nine group elements in G for pairing product
equations, multi-scalar equations and 6 for quadratic equations.

(2.1) π = R>ι( ~A) +R>(Γ + Γ>)ι( ~X ) +R>ΓRu + THu. Where TH is the sum of the TiHi.

(2.2) π = R>ι( ~B) +R>Γι(~Y) + S′
>
ι′(~a) + S′

>
Γ>ι′(~x) +R>ΓS′u + tH1u.

(2.3) π = S′
>
ι′(~b) + S′

>
(Γ + Γ>)ι′(~x) + S>ΓS′u + tH1v.

• Verify(~c, ck, E, π) checks if the proof is valid

(2.1)
(
ι( ~A)

s• ~d
)
�
(
~d
s• Γ~d

)
= ιT (tT )�

(
~u
s• ~π
)

(2.2)
(
ι′(~a)

s• ~d
)
�
(
~c
s• ι( ~B)

)
�
(
~c
s• Γ~d

)
= ι̂T (T )�

(
~u
s• ~π
)

(2.3)
(
~c
s• ι′(~b

)
�
(
~c
s• Γ~c

)
= ι′T (t)�

(
~v
s• ~π
)

• RandProof(~c, π, ck;R′, T ′) for some new randomness (R′, T ′). Given the definition of π this ran-

domization is quite straightforward: ~c′ = ~X � ~u1
R′1 � ~u2

R′2 � ~u3
R′3 and then:

π′ = π +R′
>
ι( ~A) +R′

>
(Γ + Γ>)ι(~c) +R′

>
ΓR′u + T ′Hu

= (R>ι( ~A) +R>(Γ + Γ>)ι( ~X ) +R>ΓRu + THu)

+R′
>
ι( ~A) +R′

>
(Γ + Γ>)(ι( ~X ) +Ru) +R′

>
ΓR′u + T ′Hu

= (R+R′)>ι( ~A) + (R+R′)>(Γ + Γ>)ι( ~X ) + (R+R′)>Γ(R+R′)u

+(R′
>

Γ>R−R>ΓR′)u + (T + T ′)Hu

= S>ι( ~A) + S>(Γ + Γ>)ι( ~X ) + S>ΓSu + (T ∗H)u

The last transformation is possible thanks to the antisymmetry of the matricesH, and of (R′
>

Γ>R−
R>ΓR′)u.

Therefore a use of RandProof(Prove( ~X , ck, E;R, T ), π, ck;R′, T ′) is indeed equivalent to a fresh proof

generated by Prove( ~X , ck, E;S, T ∗). The same can be done for ~d and the associated proofs.
The proof π may seem more complicated than in the SXDH case, however its logic is the same, the

main difference is the term used to compensate the quadratic term, as in this case both vectors ~X are
the same.

Examples

1. Proof of equality: Let’s consider an equation like e(X1, g)/e(X2, g) = 1T . We commit to Xi in G
by computing ci = ι(Xi) +Riu. The proof is then: π = R>ι( ~A) + THu. As noted in the original
paper, we can use the asymmetric •, in this case there aren’t any non-trivial solution to u•Hu, and
so π can be reduced to R>ι( ~A) and so to R ~A = (gR11−R21 , gR12−R22 , gR13−R23), which is composed
of only three group elements. (The initial equation without any Γ is called a linear pairing product
equation and only leads to reduced proofs)

2. Proof of a Diffie Hellman tuple: Let’s consider an equation like e(X1, g)/e(X2, h) = 1T . We commit

to Xi in G by computing ci = ι(Xi) + Riu, and then the proof is: π = R>ι( ~A) + THu. But like
in the previous example, we can use the other map, to achieve a 3 elements proof. This is a huge
difference with the SXDH instantiation, where such equation wasn’t linear and so the proof was
bigger.
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2.4.2 Initial Optimization of Groth-Sahai Proofs

From what we have just seen, Groth-Sahai proofs are quite efficient: at most 9 group elements in the
linear case, 4 in each groups in the asymmetrical one. There are several type of equation, and as we will
briefly sum-up, all alternate type leads to a simplification of the proofs, in Section 2.6, page 35, we will
present further optimizations.

Weaker types of pairing equation

We have seen in the examples, that pairing product equations come into two forms, the quadratic ones,
and the linear ones. Linear pairing product equations drastically reduce the size of the proofs, for all the
types of equations:

In the DLin instantiation, those linear equations are:

〈 ~A, ~Y〉 = tT ,

〈~a, ~Y〉 = T , 〈~x, ~B〉 = T ,

〈~x,~b〉 = t .

Whereas in the SXDH setting, those in G1 are:

〈 ~X , ~B〉 = tT ,

〈~y, ~A〉 = T , 〈~b, ~X〉 = T ,

〈~x,~b 〉 = t .

Those different simplifications help to reduce the size of the proofs, and so the number of exponenti-
ations required.

Assumption: SXDH G1 G2 Zp
Variables x ∈ Zp, X ∈ G1 2 0 0
Variables y ∈ Zp, Y ∈ G2 0 2 0
Pairing-Product Equation: 4 4 0
~A · ~Y = dT 2 0 0
~X · ~B = dT 0 2 0

Multi-Scalar Equation in G1: 2 4 0
~A · ~y = d1 1 0 0
~X ·~b = d1 0 0 2

Multi-Scalar Equation in G2 : 4 2 0

~x · ~B = d2 0 1 0

~a · ~Y = d2 0 0 2
Quadratic equations in Zp : 2 2 0
~a · ~y = d 0 0 1

~x ·~b = d 0 0 1

Assumption: DLin G Zp
Variables x ∈ Zp, Y ∈ G 2 0
Pairing-Product Equation: 9 0
~A · ~Y = dT 3 0

Multi-Scalar Equation in G: 9 0

~a · ~Y = d1 0 3

~x · ~B = d1 2 0
Quadratic equations in Zp : 6 0

~x ·~b = d 0 2

2.5 Smooth Projective Hash Functions

In this section, we will explain how to instantiate a smooth projective hash functions for a language L
composed of valid encryptions of M . This is the foundation of our methodology to build SPHF on a
broaden set of languages presented in section 5.2, page 97.

2.5.1 On a Linear Encryption

In the following, we will denote Lin(pk,M) the language of the linear encryptions c of the message M
under the encryption key pk = (Y1, Y2). Clearly, for M = 1G, the language contains the linear tuples in
basis (Y1, Y2, g). The SPHF system is defined by, for pk = (Y1, Y2) and c = (c1 = Y r11 , c2 = Y r22 , c3 =
gr1+r2 ×M)

HashKG(Lin(pk,M)) = hk = (x1, x2, x3)
$← Z3

p Hash(hk, Lin(pk,M), c) = cx1
1 cx2

2 (c3/M)x3

ProjKG(hk, Lin(pk,M), c) = hp = (Y x1
1 gx3 , Y x2

2 gx3) ProjHash(hp, Lin(pk,M), c, r) = hpr11 hpr22
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Theorem 2.5.1 This Smooth Projective Hash Function is correct.

Proof: With the above notations:

• Hash(hk, Lin(pk,M), c) = cx1
1 cx2

2 (c3/M)x3 = Y r1x1
1 Y r2x2

2 g(r1+r2)x3

• ProjHash(hp, Lin(pk,M), c, r) = hpr11 hpr22 = (Y x1
1 gx3)r1(Y x2

2 gx3)r2 = Y r1x1
1 Y r2x2

2 g(r1+r2)x3

�

Theorem 2.5.2 This Smooth Projective Hash Function is smooth.

Proof: Let us show that from an information theoretic point of view, v = Hash(hk,L(pk,M), c) is un-
predictable, even knowing hp, when c is not a correct ciphertext: c = (c1 = Y r11 , c2 = Y r22 , c3 = gr3×M),
for r3 6= r1 + r2. We recall that Hash(hk, Lin(pk,M), c) = Y r1x1

1 Y r2x2
2 gr3x3 and hp = (Y x1

1 gx3 , Y x2
2 gx3):

If we denote Y1 = gy1 and Y2 = gy2 , we have: log hp1

log hp2

log v

 =

 y1 0 1
0 y2 1

y1r1 y2r2 r3

 ·
 x1

x2

x3


The determinant of this matrix is y1y2(r3−r1−r2), which is non-zero if c does not belong to the language
(r3 6= r1 + r2). So v is independent from hp and c. �

Theorem 2.5.3 This Smooth Projective Hash Function is pseudo-random under the DLin assumption
(the semantic security of the Linear encryption).

Proof: As shown above, when c encrypts M ′ 6= M , then the distributions

D1 = {Lin(pk,M), c = Epk(M ′), hp, v $← G} D2 = {Lin(pk,M), c = Epk(M ′), hp, v = Hash(hk, Lin(pk,M), c)}

are perfectly indistinguishable. Under the semantic security of the Linear encryption, Epk(M) and
Epk(M ′) are computationally indistinguishable, and so are the distributions

D0 = {Lin(pk,M), c = Epk(M), hp, v
$← G}

D1 = {Lin(pk,M), c = Epk(M ′), hp, v $← G}

and the distributions

D2 = {Lin(pk,M), c = Epk(M ′), hp, v = Hash(hk, Lin(pk,M), c)}
D3 = {Lin(pk,M), c = Epk(M), hp, v = Hash(hk, Lin(pk,M), c)}

As a consequence, D0 and D3 are computationally indistinguishable, which proves the result. �

2.5.2 On an ElGamal Encryption

In the following, we will denote EG(pk,M) the language of ElGamal encryptions C of the message M
under the encryption key pk = u. Clearly, for M = 1G, the language contains the Diffie Hellman pairs
in basis (u, g1). The SPHF system is defined by, for pk = u and C = (c1 = ur, c2 = gr1 ×M)

HashKG(EG(pk,M)) = hk = (x1, x2)
$← Z2

p Hash(hk,EG(pk,M), C) = cx1
1 (c2/M)x2

ProjKG(hk,EG(pk,M), C) = hp = (ux1gx2
1 ) ProjHash(hp,EG(pk,M), C, r) = hpr

The security of this SPHF can be proven like before. With M = 1G, this boils down to check that
we have a Diffie-Hellman tuple
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2.6 New Results on Standard Primitives

In this section, we present several useful results on classical tools we discovered throughout this thesis.
While not being crucial to understand our protocols, they allow many optimizations, allowing sometimes
huge improvement in the final results, and they may be used directly in a lot of previous papers to
improve their efficiency without decreasing their security.

Even if Groth-Sahai proofs have presented an impressive improvement in the efficiency of Witness-
Indistinguishable, Zero-Knowledge proofs in the Standard Model, they still require a huge amount of
computation. Think to what happens when we have to verify n equations sequentially, or simply if we
have an equation with a large number of variables. In those cases exponentiations are not the main
concern, the verification required a lot of pairing computations which are really costful. So we are going
to emphasize an optimization we proposed on the Groth-Sahai framework. It allows to improve the
efficiency of verification, we propose a batching technique to allow a verifier to check several proofs
simultaneously. We even show that this technique improve the verification efficiency of one single proof.

We are then going to focus around Waters signature / function, first we propose and prove an
asymmetric version of the Waters signature, usable in asymmetric groups. We are then going to study a
variation of Waters function, with the help of the methodology followed in [HK08], this let us show that
Waters may be used on some non-binary alphabets.

We then focus on Cramer-Shoup to consider instantiations where we compute a single-hash for mul-
tiple encryptions, and some partial encryption. This will be primordial for our protocol in the UC
framework. We then present a variant of the Linear Cramer-Shoup commitment, such that it becomes
both extractable and equivocable. This approach is inspired by the UC-commitment proposed by Lindell
in [Lin11], however we increased its efficiency. We do not claim our result is a UC-commitment, as our
protocol has inherited a weakness from the original construction and so does not completely fulfill the
UC functionality.

2.6.1 Batch Groth-Sahai

In [BFI+10], we proposed a way to batch the verification of several Groth-Sahai proofs. Our first goal
was to consider the cases where we have to verify n similar equations, like when someone wants to verify
a bunch of signatures. We followed the steps of [Fia90], [BGR98], and [FGHP09]. We decided to batch
those expensive tasks all at once.

In order to do so, we used the small exponent test from [BGR98]. We picked small random exponents
ri, raised the ith-equation to power ri and checked if the product of the left-hand sides of those random-
ized equations was equal to the product of the right ones. This induces a tiny soundness error (It was
shown in [FGHP09] that it is bounded by 2−`, when ri are `-bits strings), but drastically improve the
efficiency. We also follow simple rules, to avoid costly exponentiations in GT by moving the exponent
inside the pairing on the element in G1 when possible ( [GPS08] explained that an exponentiation in G2

may be more costly).

1. Move the exponent into the pairing: e(fi, hi)
δi → e(fδii , hi)

2. Move the product into the pairing:
∏m
j=1 e(f

δj
j , hi)→ e

(∏m
j=1 f

δj
j , hi

)
3. Switch two products:

∏m
j=1 e

(
fj ,
∏k
i=1 h

δi,j
i

)
↔
∏k
i=1 e

(∏m
j=1 f

δi,j
j , hi

)
δi can be any exponent involved in the i-th equation, so of course the power ri but also the exponent

γi,k associated with the quadratic pairing product, and public scalars in both multi-scalar multiplication
equations and quadratic equations.

Batch Verification: We applied these batch-verification techniques to the verification equations for
Groth-Sahai proofs, and obtained some nice improvements, one can see that even for n = 1, our verifi-
cation technique provides some good results presented in Table 2.1, page 36.

In the following we are going to focus on DLin, and show how we obtain those results. A similar
approach was done in SXDH, however as we will primarily focus on the DLin instantiations of our protocols
in the whole thesis, so we will skip the details on how to obtain the results in SXDH.
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Naive computation Batch computation
SXDH

Pairing-product equation 5m+ 3n+ 16 m+ 2n+ 8
Multi-scalar multiplication equation in G1 8m+ 2n+ 14 min(2n+ 9, 2m+ n+ 7)

Quadratic equation 8m+ 8n+ 12 2 min(m,n) + 8
DLin

Pairing-product equation 12n+ 27 3n+ 6
Multi-scalar multiplication equation 9n+ 12m+ 27 3n+ 3m+ 6

Quadratic equation 18n+ 24 3n+ 6

Table 2.1: Number of pairings per verification, where n and m stand for the number of variables.

Pairing-Product Equation

The verification relation of a proof (~d, φ) ∈ Gn×3 ×G3×3 for a pairing equation is the following:[
ι( ~A)

s• ~d
]
�
[
~d
s• Γ~d

]
= ιT (tT )�

[
~u
s• φ
]

For simplicity, we consider the squares of all GT elements in both sides of the equation, this avoids the

square roots introduced by the
s• operator. Writing Γ~d as

(∏n
k=1 d

γi,k
k,j

)
1≤i≤n
1≤j≤3

and replacing the bilinear

product
s• by its definition, we get for the left-hand side:

n∏
i=1

e(di,1,
∏
d
γi,k
k,1 )2

n∏
i=1

e(di,1,
∏
d
γi,k
k,2 )e(di,2,

∏
d
γi,k
k,1 )

n∏
i=1

e(Ai, di,1)e(di,1,
∏
d
γi,k
k,3 )e(di,3,

∏
d
γi,k
k,1 )

n∏
i=1

e(di,2,
∏
d
γi,k
k,1 )e(di,1,

∏
d
γi,k
k,2 )

n∏
i=1

e(di,2,
∏
d
γi,k
k,2 )2

n∏
i=1

e(Ai, di,2)e(di,2,
∏
d
γi,k
k,3 )e(di,3,

∏
d
γi,k
k,2 )

n∏
i=1

e(Ai, di,1)e(di,3,
∏
d
γi,k
k,1 )

n∏
i=1

e(Ai, di,2)e(di,3,
∏
d
γi,k
k,2 )

n∏
i=1

e(Ai, di,3)2e(di,3,
∏
d
γi,k
k,3 )2

·e(di,1,
∏
d
γi,k
k,3 ) ·e(di,2,

∏
d
γi,k
k,3 )


and for the right-hand side:

3∏
i=1

e(ui,1, φi,1)2
3∏
i=1

e(ui,1, φi,2)e(ui,2, φi,1)

3∏
i=1

e(ui,1, φi,3)e(ui,3, φi,1)

3∏
i=1

e(ui,2, φi,1)e(ui,1, φi,2)

3∏
i=1

e(ui,2, φi,2)2
3∏
i=1

e(ui,2, φi,3)e(ui,3, φi,2)

3∏
i=1

e(ui,3, φi,1)e(ui,1, φi,3)

3∏
i=1

e(ui,3, φi,2)e(ui,2, φi,3) t 2
T

3∏
i=1

e(ui,3, φi,3)2


Taking each element Mi,j of the equation to the power of ri,j , multiplying everything, and regrouping
pairings, we get the following for the left-hand side:

n∏
i=1

e
(
di,1, A

r1,3+r3,1
i

∏
d

2·γi,k·r1,1
k,1 d

γi,k(r1,2+r2,1)
k,2 d

γi,k(r1,3+r3,1)
k,3

)
·

e
(
di,2, A

r2,3+r3,2
i

∏
d
γi,k(r1,2+r2,1)
k,1 d

2·γi,k·r2,2
k,2 d

γi,k(r2,3+r3,2)
k,3

)
·

e
(
di,3, A

2·r3,3
i

∏
d
γi,k(r1,3+r3,1)
k,1 d

γi,k(r2,3+r3,2)
k,2 d

2·γi,k·r3,3
k,3

)
and for the right-hand side:

3∏
i=1

e
(
ui,1, φ

2·r1,1
i,1 φ

r1,2+r2,1
i,2 φ

r1,3+r3,1
i,3

)
· e
(
ui,2, φ

r1,2+r2,1
i,1 φ

2·r2,2
i,2 φ

r2,3+r3,2
i,3

)
· e
(
ui,3, φ

r1,3+r3,1
i,1 φ

r2,3+r3,2
i,2 φ

2·r3,3
i,3

)
· t2r3,3T



2.6 New Results on Standard Primitives 37

By definition, we also have u1,2 = u2,1 = 1, and u1,3 = u2,3 this simplifies to:

e
(
u1,1, φ

2·r1,1
1,1 φ

r1,2+r2,1
1,2 φ

r1,3+r3,1
1,3

)
· e
(
u1,3, (φ1,1φ2,1)r1,3+r3,1(φ1,2φ2,2)r2,3+r3,2(φ1,3φ2,3)2·r3,3

)
e
(
u2,2, φ

r1,2+r2,1
2,1 φ

2·r2,2
2,2 φ

r2,3+r3,2
2,3

)
· e
(
u3,1, φ

2·r1,1
3,1 φ

r1,2+r2,1
3,2 φ

r1,3+r3,1
3,3

)
· e
(
u3,2, φ

r1,2+r2,1
3,1 φ

2·r2,2
3,2 φ

r2,3+r3,2
3,3

)
·

e
(
u3,3, φ

r1,3+r3,1
3,1 φ

r2,3+r3,2
3,2 φ

2·r3,3
3,3

)
· t2r3,3T

In total we reduced the number of pairings from 12n + 27 to 3n + 6 pairings at the expense of adding
9n2 + 3n exponentiations in G and one exponentiation in GT .

Multi-Scalar Multiplication Equation

The verification equation of a proof (~c, ~d, φ), with φ ∈ G3×3, of a multi-scalar multiplication equation is
the following: [

ι′(~a)
s• ~d
]
�
[
~c
s• ι( ~B)

]
�
[
~c
s• Γ~d

]
= ι̂T (T )�

[
u
s• φ
]

The left-hand side of the equation is thus[(
uai3,1, u

ai
3,2, (u3,3g)ai

)
1≤i≤n

s•
(
di,1, di,2, di,3

)
1≤i≤n

]
�
[(
ci,1, ci,2, ci,3

)
1≤i≤m

s•
(
1, 1,Bi

)
1≤i≤m

]
�
[(
ci,1, ci,2, ci,3

)
1≤i≤m

s•
(
(Γ~d)i,1, (Γ~d)i,2, (Γ~d)i,3

)
1≤i≤m

]
Considering the squares of all matrix elements, this is written out as


∏n
i=1 e

(
uai3,1, di,1

)2 ∏n
i=1 e

(
uai3,1, di,2

)
e
(
uai3,2, di,1

) ∏n
i=1 e

(
uai3,1, di,3

)
e
(
(u3,3g)ai , di,1

)∏n
i=1 e

(
uai3,2, di,1

)
e
(
uai3,1, di,2

) ∏n
i=1 e

(
uai3,2, di,2

)2 ∏n
i=1 e

(
uai3,2, di,3

)
e
(
(u3,3g)ai , di,2

)∏n
i=1 e

(
(u3,3g)ai , di,1
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Using the batching technique, we get the following left-hand side:
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While the right-hand side is similar to the previous case.
In total, we reduced from 9n+ 12m+ 27 to 3n+ 3m+ 6 pairings.

Quadratic Equation

The verification of a proof (~c, φ) ∈ Gn×3 ×G 2×3 consists in checking the following:[
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.
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We develop the left-hand side of the equation:[(
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Multiplying all matrix elements after taking them to a random power, we obtain the following:
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On the right hand side we have something similar to the previous cases, therefore we have an overall

reduction from 18n+ 24 pairings to 3n+ 6 pairings.
Those results can further be improved on linear equations, the γi,j in the left-hand side being all null

in this case.

2.6.2 Application to Existing Protocols

We applied those batching techniques to classical schemes.
The first scheme we consider was proposed by Groth in 2007 [Gro07]. It is a constant-size group

signature scheme whose security can be proved in the standard model. (Group signature are defined
later, in section 3.1, page 55) For illustrative purposes, we concentrate on the (simpler) variant of the
scheme. Even this variant does not achieve satisfactory efficiency: the verification of a signature requires
the computation of 68 expensive pairing operations. In Section 2.6.2, page 38, we propose an improved
verification procedure in which the total number of bilinear map evaluations drops to 11. In addition, if
n ≥ 2 signatures (for the same group) have to be verified at once, we manage to decrease this number
from 11n to 4n+ 7.

In Section 2.6.2, page 40, we study the P-signature scheme1 proposed by Belenkiy, Chase, Kohlweiss
and Lysyanskaya [BCKL08]. Since anonymous credentials are an immediate consequence of P-signatures,
we thereby apply our techniques to privacy-preserving authentication mechanisms. Belenkiy et al. pro-
posed two instantiations of their protocol (based on SXDH and DLin). They evaluated that the verification
of the proof of possession of a signature would involve respectively 68 and 128 pairing evaluations. We
show that this can be reduced to 15 and 12, respectively. Moreover, the number of pairing operations
required to verify n ≥ 2 signatures is reduced to 2n+13 and 3n+9, respectively, by using our techniques
which is a huge improvement when compared with the original cost of 68n and 128n.

Application 1: Groth’s Group Signatures

Description: We demonstrate our techniques by applying them to one of the most practical group
signature schemes in the standard model to date: Groth’s construction [Gro07]. Groth proposed a
methodology of transforming certified signatures [BFPW07] that respect a certain structure into group
signatures using Groth-Sahai NIWI proofs:

• a member picks keys for a certified signature scheme and asks the issuer to certify her public
verification key for the signature scheme;

1A P-signature scheme is a digital signature scheme with an additional non-interactive proof of signature possession.
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• to produce a group signature, the member will make a certified signature, encrypt it and then use
NIWI proofs to demonstrate that the ciphertext contains a valid certified signature.

Groth proposed an efficient certified signature scheme based on the so called q-U assumption (see [Gro07]
for details). In the simple version of the scheme, the issuer’s public key is a triple (f, h, T ) ∈ G2 × GT
(and its private key is z ∈ G such that e(f, z) = T ) and the certificate of a group member with public key
v = gx ∈ G is a pair (a, b) satisfying e(a, vh) e(f, b) = T . To sign a message m ∈ Zp, the group member
first computes a weak Boneh-Boyen signature [BB08] σ = g1/(x+m) using her private key x; then she
forms Groth-Sahai commitments dv, db and dσ to the group elements v, b and σ, resp., and makes a
proof that they satisfy the following:

e(a, vh) e(f, b) = T and e(σ, gmv) = e(g, g)

The fact that a is given in the clear is not a problem since the certificate is malleable, so the group member
can unlinkably re-randomize it each time she signs a message. A group signature is thus of the form
(a,db,dv,dσ, ψ, φ), where ψ and φ denote the Groth-Sahai proofs for the two equations, respectively.

We first instantiate our generic batch construction to verify a single signature more efficiently and
then show how to verify multiple signatures at once.

1st Equation: The first equation is a linear pairing equation, so we can use an improved version of

our pairing equation batch. If we consider an equation 〈 ~A, ~Y〉 = tT we obtain

n∏
i=1

e(Ai, ds1i,1d
s2
i,2d

s3
i,3) = t s3T e(u11, ψ

s1
1 ) e(u13, (ψ1ψ2)s3) e(u22, ψ

s2
2 ) e(u31, ψ

s1
3 ) e(u32, ψ

s2
3 ) e(u33, ψ

s3
3 ) .

So, in our case, after some more optimization (shifting e(a, h−1))s3 to the left-hand side of the
equation) we obtain:
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2nd Equation: We get:
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Multiplying the two equations we get a single verification relation of the following form:
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Analysis: With no use of batching techniques, the verification of a single signature takes for the first
equation 13 pairings and for the second 20 pairings for the left-hand side and 35 for its right-hand side.
This is an overall of 68 pairing evaluations, compared to 11 for the batched verification, so even on a
single signature we have a significant improvement.
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Batching Several Group Signatures:

Consider the situation where we want to verify multiple group signatures at once. That is given a
group public key (f, h, T, u11, u13, u22, u31, u32, u33) and n group signatures

(
a(k),d

(k)
b ,d(k)

v ,d(k)
σ , (ψ

(k)
i )1≤i≤3, (φ

(k)
ij )1≤i,j≤3

)
Using the same technique of taking each of the (new) equations to the power of some randomness and
multiplying them, we can unify the pairings e(·, f) on the left-hand side and all pairings (which are of
the form e(uij , ·)) on the right-hand side.

Instead of 11n pairings needed when checking each equation, the batched version only requires 4n+7
pairings.

Application 2: Belenkiy-Chase-Kohlweiss-Lysyanskaya’s P-signatures

Description: Belenkiy et al. formalized in [BCKL08] digital signature schemes with an additional
non-interactive proof of signature possession that they called P-signature schemes. They proposed two
constructions: the first one relies on the weak Boneh-Boyen signature scheme [BB08] while the second
one is inspired by its full version.

Since Belenkiy et al.’s first scheme relies on a rather strong assumption, we consider only their
second proposal: a signature σ on a message m ∈ Zp is a triple σ = (C1, C2, C3) ∈ G3 such that
e(C1, vh

mC2) = e(g, h) and e(f, C2) = e(C3, w), where f, g, h are (public) generators of G and v, w ∈ G
are parts of the signer’s public key. To prove the possession of such a signature, a prover forms the
Groth-Sahai commitments c1, c2 and c3 for the group elements C1,M1 = fm, C3 and d1 and d2 for the
group elements M2 = hm and C2 in G and provides a proof that they satisfy:

e(C1, vM2C2) = e(g, h), e(f, C2) = e(C3, w) and e(f,M2) = e(M1, h)

SXDH Instantiation: In [BCKL08], the authors evaluated that the verification of the proof in the
SXDH instantiation requires the computation of 68 pairings. We have shown that it can be reduced to
15.

DLin Instantiation: As with the previous scheme, the last two pairing-product equations from are
actually linear pairing-product equations. We denote the Groth-Sahai commitments for the group ele-
ments C1, C2, C3,M1 = fm,M2 = hm in G by d1,d2, d3, d4 and d5 (respectively) and φ, ψ and θ the
proofs that they satisfy the first, the second and the third equation (respectively).

For the first equation, we get:
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1 (respectively) in (2.6.2), we obtain the second and third equation. Once the three equations multiplied,
we obtain:
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In [BCKL08], the authors evaluated that the verification of the proof in the DLin instantiation requires
the computation of 126 pairings. With our result, we prove it can be reduced to 12.

Batching Several P-Signatures: Like with the previous scheme, in the situation where we want to
verify multiple P-signatures at once, we can further unify some extra pairings (here those containing
f, h and w on the left-hand side and all pairings (which are of the form e(ui,j , ·)) on the right-hand
side). Instead of 15n (resp. 12n) pairings needed when checking each equation, the batched version
only requires 2n+ 13 (resp. 3n+ 9) pairings.

This last result emphasizes the improvement our batching verification technique proposes. From
126 pairings computation needed for a single signature, we successfully reduced it to 3n + 9 for n
signatures. The two previous scheme were not conceived with those batching techniques in mind, and
however benefits greatly from our approach, which leads to think that our techniques on many of today’s
existing pairing-based schemes, using the Groth-Sahai framework might yield huge improvements without
a drastic reduction of the security.

2.6.3 Asymmetric Waters Signature

In this section, we briefly present an asymmetric version of the Waters Signature. This version is useful
in instantiations in asymmetric groups. To prove its security we need to rely on the CDH+ hypothesis
recalled in Section 2.2.2, page 17.

Waters+ Signature Scheme
p S = (SetupS ,KeyGenS ,Sign,Verif):

• SetupS(1K), where K is the security parameter, generates the global parameters param of the scheme,
and more specifically the bilinear group (p,G1,G2,GT , e, g1, g2), an extra generator h1 ∈ G1, and
generators (ui)J0,kK ∈ Gk+1

1 for the Waters function, where once again k is a polynomial in K,

F(m) = u0

∏
i∈J1,kK u

mi
i , where m = (m1, . . . ,mk) ∈ {0, 1}k.

• KeyGenS(param) picks a random x
$← Zp and outputs the secret key sk = Y = hx1 , and the

verification key vk = X = (gx1 , g
x
2 );

• Sign(sk,m;µ) outputs a signature σ(m) = (Y F(m)µ, g−µ1 , g−µ2 );

• Verif(vk,m, σ) checks the validity of σ, by checking if the following pairing equations hold: e(σ1, g2)·
e(F(m), σ3) ?= e(h1, X2) and e(σ2, g2) ?= e(g1, σ3).

y

Theorem 2.6.1 The Asymmetric Waters signature scheme is randomizable and existentially unforgeable
under the CDH+ assumption.

Proof: First, let us define Random(vk, (F,ΠM ), σ = (σ1, σ2, σ3); s′) to output σ′ = (σ1 ·F s
′
, σ2 ·g−s

′

1 , σ3 ·
g−s

′

2 ), for random s′
$← Zp. We easily see it corresponds to Sign(sk, F,ΠM ; s+ s′ mod p). Because of the

group structure of Zp, we get appropriate distributions.
Let A be an adversary breaking the existential unforgeability of the above signature scheme, i.e. after

at most qs signing queries, it succeeds in building a new signature with probability ε. Let (g1, g2, λ =
(ga1 , g

a
2 ), µ = gb1) be a CDH+-instance. We show how an adversary B can compute gab1 thanks to A.
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SetupS . Pick a random position j
$← {0, . . . , k}, choose random indices y0, y1, . . . , yk

$← {0, . . . , 2qs−1},
and random scalars z0, z1, . . . , zk

$← Zp. One defines X1 = λ1, X2 = λ2, h1 = gb1, u0 = hy0−2jqs
1 gz0 ,

ui = hyi1 g
zi
1 .

Signing queries. To answer a signing query on m, with a message M = (Mi), we define

H = −2jqs + y0 +
∑
i

yiMi, J = z0 +
∑
i

ziMi : F(M) = hH1 g
J
1 .

If H ≡ 0 (mod p) then abort, otherwise set σ = (X
−J/H
1 F(M)s, X

1/H
1 g−s1 , X

1/H
2 g−s2 ). Defining µ̃ =

s− a/H, we have:

σ :=
(
X
−J/H
1 (hH1 g

J
1 )s, X

1/H
1 g−s1 , X

1/H
2 g−s2

)
=
(
X
−J/H
1 (ha1g

Ja/H
1 )(F(M))µ̃, X

1/H
1 g

−a/H
1 g−µ̃1 , X

1/H
2 g

−a/H
2 g−µ̃2

)
=
(
ha1(F(M))µ̃, g−µ̃1 , g−µ̃2

)
.

After at most qs signing queries A outputs a forgery σ∗ = (σ∗1 , σ
∗
2 , σ
∗
3) on M∗. As before, we define

H∗ = −2jqs + y0 +
∑
i

yiM
∗
i , J∗ = z0 +

∑
i

ziM
∗
i : F(M∗) = hH

∗

1 gJ
∗

1 .

If H∗ 6≡ 0 (mod p) then abort, otherwise, as shown above, for some µ∗, σ∗ = (ha1F(M∗)µ
∗
, g−µ

∗

1 , g−µ
∗

2 ),

and thus σ∗ = (ha1g
J∗µ∗

1 , g−µ
∗

1 , g−µ
∗

2 ). As a consequence, σ∗1(σ∗2)J
∗

= ha1 = gab1 : one has solved the CDH+

problem. As shown in [HK08], it occurs with non-negligible probability that all the H are null except
H∗. �

2.6.4 Waters Function Programmability

In this section, we prove that for a polynomial alphabet size, the Waters function remains programmable.
We recall some notations introduced in [HK08] and show our result which can be seen as a generaliza-
tion of a result presented by Naccache [Nac05] where he considered a variant of Waters identity-based
encryption [Wat05] with shorter public parameters.

Definitions

Let us recall some basic definitions. A family of cyclic groups G = (GK)K∈N, indexed by a security
parameter K, is called a group family. A group hash function H for G, an alphabet Σ = Σ(K) and an
input length ` = `(K) is a pair of probabilistic polynomial-time algorithms (PHF.Gen,PHF.Eval) such
that:

• PHF.Gen takes as input a security parameter K and outputs a key κ

• PHF.Eval takes as input a key κ output by PHF.Gen and a string X ∈ Σ` and outputs an element
of GK.

Group Hash Function [HK08]
p A group hash function (PHF.Gen,PHF.Eval) is (m,n, δ)-programmable, if there exist two probabilistic
polynomial-time algorithms (PHF.TrapGen,PHF.TrapEval) such that

• Syntactic: For g, h ∈ G,PHF.TrapGen(1K, g, h) generates a key κ′ and a trapdoor t such that
PHF.TrapEval(t,X) produces integers aX , bX for any X ∈ Σ`

• Correctness: For all generators g, h ∈ G, all (κ′, t) output by PHF.TrapGen(1K, g, h) and all X ∈
Σ`, Hκ′(X) := PHF.Eval(κ′, X) satisfies Hκ′(X) = gaXhbX where (aX , bX) := PHF.TrapEval(t,X).

• Statistically close trapdoor keys: For all g, h ∈ G2,PHF.Gen(1K) and PHF.TrapGen(1K, g, h)
output keys κ and κ′ statistically close.
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• Well-distributed logarithms: For all g, h ∈ G, all (κ′, t) output by PHF.TrapGen(1K, g, h) and
all bit-strings (Xi)1,...,m, (Zi)1,...,n ∈ Σ` such that ∀i, j,Xi 6= Zj , we have

Pr[aX1
= . . . = aXm

= 0 ∧ aZ1
, . . . , aZn

6= 0] ≥ δ

where the probability is taken over the random coins used by PHF.TrapGen and (aXi
, bXi

) :=
PHF.TrapEval(t,Xi) and (aZi

, bZi
) := PHF.TrapEval(t, Zi).

y

Instantiation with Waters function

Let us consider the Waters function presented in [Wat05].

Multi-Generator PHF
p Let G = (GK) be a group family, and ` = `(K) a polynomial. We define F = (PHF.Gen,PHF.Eval) as
the following group hash function:

• PHF.Gen(1K) outputs a uniformly and independently sampled κ = (h0, . . . , h`) ∈ G`+1

• PHF.Eval(κ,X) parses κ and X = (x1, . . . , x`) ∈ {0, 1}` and outputs Fκ(X) = h0

∏`
i=1 h

xi
i .

y

This function was shown to be (1, q, δ)-programmable with a δ = O(1/(q
√
`)) and (2, 1, δ)-programmable

with a δ = O(1/`) (cf. [HK08]).
However this definition requires to generate and store n+1 group generators where n is the bit-length

of the messages you want to hash. We consider a more general case where instead of hashing bit-per-bit
we decide to hash blocks of bits.

Improved Multi-Generator PHF
p Let G = (GK) be a group family, Σ = {0, . . . , τ} a finite alphabet and ` = `(K) a polynomial. We define
F = (PHF.Gen,PHF.Eval) as the following group hash function:

• PHF.Gen(1K) returns a uniformly and independently sampled κ = (h0, . . . , h`) ∈ G`+1

• PHF.Eval(κ,X) parses κ and X = (x1, . . . , x`) ∈ Σ` and returns F+
κ(X) = h0

∏`
i=1 h

xi
i .

y

Using a larger alphabet allows to hash from a larger domain with a smaller hash key, but it comes at a
price since one can easily prove that the function is no longer (2, 1)-programmable:

Theorem 2.6.2 ((2,1)-Programmability) For any group family G with known order and τ > 1, the
function F+ is not a (2,1)-programmable hash function if the discrete logarithm problem is hard in G.

Proof: Consider a discrete logarithm challenge (g, h) in a group G and suppose by contradiction that
the function F+ is (2, 1)-programmable with τ ≥ 2 (i.e. , we suppose that there exist two probabilis-
tic polynomial-time algorithms (PHF.TrapGen,PHF.TrapEval) satisfying the definition 2.6.4 for a non-
negligible δ).

For any hash key κ′ and trapdoor t generated by PHF.TrapGen(1λ, g, h), we can consider the messages
X1 = (2, 0), X2 = (1, 1), Z = (0, 2) and with non-negligible probability over the random coins used by
PHF.TrapGen we have aX1 = aX2 = 0 and aZ 6= 0 where (aX1 , bX1) := PHF.TrapEval(t,X1), (aX2 , bX2) :=
PHF.TrapEval(t,X2) and (aZ , bZ) := PHF.TrapEval(t, Z). By the correctness property, we have gaZhbz =
h0h

2
2 = h2bX2/hbX1 and we can extract the discrete logarithm of g in base h as follows:

logh(g) =
2bX2

− bX1
− bZ

aZ
mod |Gλ|.

�
�

However we still have the interesting property:
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Theorem 2.6.3 ((1,poly)-Programmability) For any polynomial q and a group family G with groups
of known order, the function F+ is a (1, q, δ)-programmable hash function with a δ = Ω(1/τq`).

Remark In order to be able to sign all messages in a set M, we have to consider parameters τ and `
such that τ ` ≥ #M, but the security is proved only if the value δ is non-negligible (i.e. if ` = λO(1)

and τ = λO(1)). In particular if M is of polynomial size in λ (which is the case in our WSN application
with data aggregation), one can use τ = #M and ` = 1 (namely, the Boneh-Boyen hash function), and
therefore get data confidentiality.

Proof: Let us first introduce some notations. Let n ∈ N∗, let Aj be independent and uniform random

variables in {−1, 0, 1}. If we denote 2σ2
j their quadratic moment, we have 2σ2

j = 2/3 and σj =
√

1/3.

We note s2
n =

∑n
j=1 σ

2
j = n/3.

The Local Central Limit Theorem. Our analysis relies on a classical result on random walks,
called the Local Central Limit Theorem. It basically provides an approximation of Pr[

∑
Aj = a] for

independent random variables Aj . This is a version of the Central Limit Theorem in which the conclusion
is strengthened from convergence of the law to locally uniform pointwise convergence of the densities.
It is worded as follows in [DM95], where φ and Φ are the standard normal density and distribution
functions:

Theorem 2.6.4 Let Aj be independent, integer valued random variables where Aj has probability mass
function fj. For each j, let q(fj) =

∑
k min(fj(k), fj(k + 1)) and Qn =

∑n
i=1 q(fj). Denote Sn =

A1 + · · ·+An. Suppose that there are numbers αn, βn such that

1. limn→∞ Pr[(Sn − αn)/βn) < t] = Φ(t),−∞ < t <∞,

2. βn →∞,

3. and lim supβ2
n/Qn <∞,

then supk |βn Pr[Sn = k]− φ((k − αn)/βn)| → 0 as n→∞.

While those notations may seem a little overwhelming, this can be easily explained in our case. With
Aj ∈ {−1, 0, 1} with probability 1/3 for each value.

1. It requires the variables to verify the Lindeberg-Feller theorem. However as long as the variables
verify the Lindeberg’s condition2, this is true for βn = sn and αn = 0.

2. In our application, βn = sn =
√
n/3, so once again we comply with the condition.

3. Since fj(k) is simply the probability that Aj equals k, then q(fj) = 2/3. This leads to Qn = 2n/3.
As a consequence, β2

n/Qn = 1/2.

So we have: supk |βn Pr[Sn = k]− φ((k − αn)/βn)| → 0, that is, in our case

sup
k
|
√
n/3 Pr[Sn = k]− φ(k/

√
n/3)| → 0.

We will solely focus on the case k = 0: since φ(0) = 1/
√

2π, Pr[Sn = 0] = Θ(1/
√
n). In addition, it is

clear that Pr[Sn = k] ≤ Pr[Sn = 0] for any k 6= 0. (cf [HK08])

Lemma 2.6.5 Let (Aij)[[1,n]]×[[1,J]] be independent, integer valued random variables in {−1, 0, 1}, then

∀X ∈ [[1, τ ]]n, Pr[
∑n
i=1

∑J
j=1XiAij = 0] = Ω(1/τ

√
nJ), where the probability distribution is over the

Aij.

This lemma will be useful to prove the lower bound in the following, we only consider word with no-null
coefficient Xi, if a Xi is null, we simply work with a shorter random walk of length J · (n− 1) instead of
Jn.

Proof: Let us denote dij , the random variable defined as XiAij : they are independent, integer valued

random variables. As above, s2
n =

∑n
i=1

∑J
j=1 σ

2
j =

∑n
i=1 JX

2
i /3. So nJ/3 ≤ s2

n ≤ nτ2J/3.

2Lindeberg’s condition is a sufficient criteria of the Lindeberg-Feller theorem, for variables with a null expected value
it requires that ∀ε > 0, limn→∞ 1/s2n

∑n
j=1 E[A2

j · 1{|Aj |>εsn}]→ 0. In our case, as soon as n > 3/ε2, we have |Aj | ≤ 1 ≤
ε
√
n/3 ≤ εsn, so the sum is null. (1{|Aj |>εsn} is the indicator function of variables greater that εsn
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1. The Lindeberg’s condition is verified. As soon as n > 3τ/Jε2 we have εsn > τ and so |dij | < sn,
and so once again the sum is null.

2. sn →∞.

3. Each dij ∈ {−Xi, 0, Xi} with probability 1/3 for each value, so q(fij) = 2/3 and so Qn =∑
i,j q(fij) = 2nJ/3. So β2

n/Qn ≤ (nτJ/3)/(2nJ/3) ≤ τ/2 <∞.

Then we can apply the Local Central Limit Theorem to dij , and conclude: Pr[
∑n
i=1

∑J
j=1XiAij = 0] =

Θ(1/sn) = Θ(1/τ
√

(nJ). �

In the following, we will denote a(X) =
∑n
i=1 aiXi, where X ∈ {0, . . . , τ}n. The probabilities will be

over the variable aij while X and Y are assumed to be chosen by the adversary. Our goal is to show
that even for bad choices of X and Y , a random draw of aij provides enough freedom.

Let J = J(λ) be a positive function. We define the following two probabilistic polynomial-time
algorithms (PHF.TrapGen,PHF.TrapEval):

• PHF.TrapGen(1λ, g, h): which chooses some independent and uniform elements (aij)(0,...,`),(1,...,J)

in {−1, 0, 1}, and random group exponents (bi)(0,...,`). It sets h0 = ga0hb0 , and ai =
∑J
j=1 aij ,

hi = gaihbi for i ∈ {1, . . . , `}. It then outputs the hash key κ = (h0, . . . , h`) and the trapdoor
t = (b0, . . . , a`, b`).

• PHF.TrapEval(t,X): which parses X = (X1, . . . , X`) ∈ Σ` = {0, . . . , τ}` and outputs aX = a0 +∑
aiXi and bX = b0 +

∑
biXi.

As this definition verifies readily the syntactic and correctness requirements, we only have to prove
the two other ones. We stress the importance of the hardwired 1 in front of a0 this allows us to consider
multisets X ′ = 1 :: X and Y ′ = 1 :: Y , and so there is no k such that X ′ = kY ′. And we also stress that
ai =

∑J
j=1 aij is already a random walk of length J (described by the aij), on which we can apply the

Local Central Limit Theorem and so Pr[ai = 0] = Θ(1/
√
J). By noticing that summing independent

random walks is equivalent to a longer one and applying the Local Central Limit Theorem, we have:

Θ(1/τ
√

(`+ 1)J) ≤ Pr[a(X ′) = 0] ≤ Θ(1/
√
J).

To explain further the two bounds:

• For the upper bound: we consider X fixed, and note t =
∑
i≤` aiXi, by construction ai are

independent, so a0 is independent from t then Pr[a(X ′) = 0] = Pr[a0 = −t] ≤ Pr[a0 = 0] ≤
Θ(1/

√
J) (because the random walk is more likely to reach 0 than any other value, and a0 is a

random walk of length J).

• For the lower bound, we proceed by recurrence on `, to showH` : Θ(1/τ
√

(`+ 1)J) ≤ Pr[a(X ′) = 0]
(where X ′ ∈ 1 :: [[0, τ ]]`): For ` = 0, we consider X ′ = 1, we have a random walk of length J , so
Θ(1/τ

√
J) ≤ Θ(1/

√
J) ≤ Pr[a(X ′) = 0]. We note X0 = 1 for the hardwired 1 in X ′. Let us

suppose the property true at rank k, let us prove it at rank k + 1:

– If ∃i0, Xi0 = 0 then we can consider a random walk of length k and apply the previous step,
and conclude because Θ(1/τ

√
(k + 1)J) ≤ Θ(1/τ

√
kJ)

– Else, one can apply lemma 2.6.5 to conclude.

Therefore, ∀`,∀X ′ ∈ 1 :: [[0, τ ]]`,Θ(1/τ
√

(`+ 1)J) ≤ Pr[a(X ′) = 0]

We can now deduce that ∀X,Y ∈ [[0, τ ]]` with X 6= Y : Pr[a(Y ′) = 0|a(X ′) = 0] ≤ Θ(1/
√
J). This can

easily be seen by noting i0 the first index where Yi 6= Xi. We will note X̄ ′ = X ′−Xi0 , in the following we
will use the fact that a(X ′) = 0 ⇔ a(X̄ ′) = −ai0Xi0 .(X 6= Y so i0 exists, and thanks to the hardwired
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1 we do not have to worry about Y ′ being a multiple of X ′.)

Pr[a(Y ′) = 0|a(X ′) = 0] ≤ Pr[a(Y ′) = a(X ′)|a(X ′) = 0]

≤ Pr[Yi0ai0 + a(Ȳ ′) = Xi0ai0 + a(X̄ ′)|a(X ′) = 0]

≤ max
t

Pr[(Yi0 −Xi0)ai0 = t|a(X̄ ′) = −Xi0ai0 ] (2.4)

≤ max
s,t′

Pr[ai0 = t′|a(X̄ ′) = s] (2.5)

≤ max
t′

Pr[ai0 = t′] (2.6)

≤ Pr[ai0 = 0]

≤ Θ(1/
√
J)

(2.4) we start with (Yi0 −Xi0)ai0 = a(X̄ ′)− a(Ȳ ′), and then consider the max probability for all values
a(X̄ ′)− a(Ȳ ′).

(2.5) We consider the maximum probability for all values of −Xi0ai0 .

(2.6) ai0 and a(X̄ ′) are independent.

Hence, for all X1, Y1, . . . , Yq, we have

Pr[aX1
= 0 ∧ aY1

, . . . , aYq
6= 0] = Pr[aX1

= 0] Pr[aY1
, . . . , aYq

6= 0|aX1
= 0]

≥ Θ(1/τ
√
`J)

(
1−

q∑
i=1

Pr[aYi
= 0|aX1

= 0]

)
≥ Θ(1/τ

√
`+ 1J)(1− qΘ(1/

√
J)).

Now we set J = q2, to obtain the result. In that case the experiment success is minored by something
linear in 1/(qτ

√
`+ 1). �

�

2.6.5 Multi Cramer-Shoup Encryption

The Cramer-Shoup (and Linear Cramer-Shoup) schemes can be extended to encrypt vectors, with labels:

Double Linear Cramer-Shoup Encryption (DLCS)

Informally the Linear Cramer-Shoup encryption scheme can be extended as follows:

• The global parameters consist of a group G of order p, three independent generators g1, g2, g3
$← G,

and a collision-resistant hash function family H.

• The key generation algorithm chooses dk = (x1, x2, x3, y1, y2, y3, z1, z2, z3)
$← Z9

p, and sets, for
i = 1, 2, ci = gxi

i g
x3
3 , di = gyii g

y3

3 , and hi = gzii g
z3
3 . It also chooses a collision-resistant hash

function HK
$← H. The encryption key is pk = (c1, c2, d1, d2, h1, h2,HK).

• To encrypt (M,N) ∈ G2 under the key pk with a label `, one chooses r, s, a, b
$← Zp, computes

C = (u = (gr1, g
s
2, g

r+s
3 ), e = Mhr1h

s
2, v = vr1v

s
2) def= LCS(`, pk,M ; r, s)

C′ = (α = (ga1 , g
b
2, g

a+b
3 ), β = Nha1h

b
2, γ = va1v

b
2) def= LCS∗(`, pk, N, ξ; a, b)

where the v and γ’s are computed afterward with v1 = c1d
ξ
1 and v2 = c2d

ξ
2, and ξ = HK(`,u, e),

hence the notation of LCS without input ξ (when it is generated during the encryption) and LCS∗

with input ξ when it is provided from outside. Thus (C, C′)← Encrypt(`, pk,M,N ; r, s, a, b).

• The decryption algorithm first computes ξ = HK(`,u, e) and checks whether ux1+ξy1

1 · ux2+ξy2

2 ·
ux3+ξy3

3
?= v. If the equality holds, one computes M = e/(uz11 u

z2
2 u

z3
3 ) and N = β/(αz11 α

z2
2 α

z3
3 ), and

outputs (M,N). Otherwise, one outputs ⊥.
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We are now going to formalize precisely this encryption and show the IND-PD-CCA (indistinguishability
against partial-decryption chosen-ciphertext attacks) security level of multi-message double encryption
(n − DLCS), where a pair of message-vectors is encrypted, with a common ξ computed globally on all

the sub-ciphertexts of the first vector only. Hence, the two vectors ~M and ~N do not have to be sent
together to be encrypted: see the Section 2.6.5, page 48 for the description and the security model for
IND-PD-CCA , which provides a decryption oracle on the first vector only (the only one to be CCA-
protected, since ξ is computed on this part only). The proof uses a classical hybrid argument present in
the original proof of the linear Cramer-Shoup.

Theorem 2.6.6 The Multiple n−DLCS encryption scheme is IND-PD-CCA if H is a collision-resistant
hash function family, under the DLin assumption in G:

Advind−pd−ccan−DLCS (n, qd, t) ≤ 4n×
(
Advdlinp,G,g(t) + SucccollH (t) +

qd
p

)
.

In the following, we consider a CRS containing a group G of order p, independent generators (g =
(g1, g2, g3),h = (h1, h2), c = (c1, c2),d = (d1, d2)), and a collision-resistant hash function HK , we will
omit the encryption key and denote DLCSCom(`,M,N ; r, s, a, b) def= Encrypt(`, pk,M,N ; r, s, a, b). In a
similar way, we will omit the key in LCS(`,M ; r, s) and LCS∗(`,N, ξ; a, b), which can then all be seen as
extractable commitment schemes.

We can now generalize (and prove the security) this protocol to:

Multi Double Linear Cramer-Shoup Encryption (n− DLCS)

We can encrypt pairs of message vectors (Mi, Ni)i∈J1,nK, partially IND− CCA2 protected, with a common
ξ:

• ESetup(1K): generates a group G of order p, with three independent generators (g1, g2, g3)
$← G3;

• KeyGenE(param): generates dk = (x1, x2, x3, y1, y2, y3, z1, z2, z3)
$← Z9

p, and sets, for i = 1, 2,
ci = gxi

i g
x3
3 , di = gyii g

y3

3 , and hi = gzii g
z3
3 . It also chooses a collision-resistant hash function HK .

The encryption key is ek = (c1, c2, d1, d2, h1, h2,HK).

• Encrypt(`, ek, ~M ;~r,~s): for a vector ~M ∈ Gn and two vectors ~r,~s ∈ Znp , computes

C = (C1, . . . , Cn), where Ci = (ui = (gri1 , g
si
2 , g

ri+si
3 ), ei = Mi · hri1 h

si
2 , vi = (c1d

ξ
1)ri(c2d

ξ
2)si)

with the vi computed afterwards with ξ = HK(`,u1, . . . ,un, e1, . . . , en).

• Encrypt′(`, ek, ~N, ξ;~a,~b): for a vector ~N ∈ Gn and two vectors ~a,~b ∈ Znp , computes

C′ = (C′1, . . . , C′n), where C′i = (~αi = (gai1 , g
bi
2 , g

ai+bi
3 ), βi = Ni · hai1 h

bi
2 , γi = (c1d

ξ
1)ai(c2d

ξ
2)bi)

where the γi’s are computed with the above ξ = HK(`,u1, . . . ,un, e1, . . . , en), hence the additional
input.
One can use both simultaneously: on input (`, ek, ~M, ~N ;~r,~s,~a,~b), the global encryption algorithm

first calls Encrypt(`, ek, ~M ;~r,~s) and to get C and ξ, and then calls Encrypt′(`, ek, ~N, ξ;~a,~b) to get
C′.

• Decrypt(`, dk, C, C′): one first parses C = (C1, . . . , Cn) and C′ = (C′1, . . . , C′n), where Ci = (ui, ei, vi)
and C′i = (~αi, βi, γi), for i = 1, . . . , n, computes ξ = HK(`,u1, . . . ,un, e1, . . . , en) and checks

whether, for i = 1, . . . , n, ux1+ξy1

i,1 · ux2+ξy2

i,2 · ux3+ξy3

i,3
?= vi (but not for the γi’s). If the equal-

ity holds, one computes Mi = ei/(u
z1
i,1u

z2
i,2u

z3
i,3) and Ni = βi/(α

z1
i,1α

z2
i,2α

z3
i,3), and outputs ( ~M =

(M1, . . . ,Mn), ~N = (N1, . . . , Nn)). Otherwise, one outputs ⊥.

• PDecrypt(`, dk, C): is a partial decryption algorithm that does as above but working on the C part

only to get ~M = (M1, . . . ,Mn) or ⊥.

DLCS denotes the particular case where n = 1: DLCS(`, ek,M,N ; r, s, a, b) = (C, C′), with

C = (u = (gr1, g
s
2, g

r+s
3 ), e = M · hr1hs2, v = (c1d

ξ
1)r(c2d

ξ
2)s) = LCS(`, ek,M ; r, s),

C′ = (~αi = (ga1 , g
b
2, g

a+b
3 ), β = N · ha1hb2, γ = (c1d

ξ
1)a(c2d

ξ
2)b) = LCS∗(`, ek, N, ξ; a, b)
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where ξ = HK(`,u, e).
This scheme is indistinguishable against partial-decryption chosen-ciphertext attacks, where a partial-

decryption oracle only is available, but even when we allow the adversary to choose ~M and ~N in two
different steps (see the security game below), under the DLin assumption and if one uses a collision-
resistant hash function (see section Theorem 2.6.5, page 48).

Indistinguishability against partial-decryption chosen-ciphertext attacks for vectors, in two steps: this
security notion can be formalized by the following security game, where the adversary A keeps some
internal state between the various calls FINDM , FINDN and GUESS. In the first stage FINDM , it receives the
encryption key ek; in the second stage FINDN , it receives the encryption of ~Mb: C∗ = Encrypt(`, ek, ~Mb);

in the last stage GUESS it receives the encryption of ~Nb: C′∗ = Encrypt′(`, ek, ξ∗, ~Nb), where ξ∗ is the
value involved in C. During all these stages, it can make use of the oracle ODecrypt(`, C), that outputs
the decryption of C under the label ` and the challenge decryption key dk, using PDecrypt(`, dk, C). The
input queries (`, C) are added to the list CT .

Expind−pd−cca−bE,A (K, n)

1. param← ESetup(1K); (ek, dk)← KeyGenE(param)

2. (`∗, ~M0, ~M1)← A(FINDM : ek,ODecrypt(·, ·))
3. C∗ ← Encrypt(`∗, ek, ~Mb)

4. ( ~N0, ~N1)← A(FINDN : C∗,ODecrypt(·, ·))
5. C′∗ ← Encrypt′(`∗, ek, ξ∗, ~Nb)
6. b′ ← A(GUESS : C′∗,ODecrypt(·, ·))
7. IF (`∗, C∗) ∈ CT RETURN 0
8. ELSE RETURN b′

The advantages are, where qd is the number of decryption queries:

Advind−pd−ccaE (A) = |Pr[Expind−pd−cca−1
E,A (K, n) = 1]− Pr[Expind−pd−cca−0

E,A (K, n) = 1]|

Advind−pd−ccaE (n, qd, t) = max
A≤t

Advind−pd−ccaE (A).

Theorem 2.6.7 The Multiple n−DLCS encryption scheme is IND-PD-CCA if H is a collision-resistant
hash function family, under the DLin assumption in G:

Advind−pd−ccan−DLCS (n, qd, t) ≤ 4n×
(
Advdlinp,G,g(t) + SucccollH (t) +

qd
p

)
.

Corollary 2.6.8 The Multiple n−LCS encryption scheme is IND-CCA if H is a collision-resistant hash
function family, under the DLin assumption in G.

Proof: Let us be given a DLin challenge (g1, g2, g3, u1 = gr1, u2 = gs2, u3 = gt3), for which we have to
decide whether (u1, u2, u3) is a linear tuple in basis (g1, g2, g3), and thus t = r + s mod p, or a random
one. From an IND-PD-CCA adversary A against the encryption scheme, we built a DLin distinguisher B.
The latter first uses (g1, g2, g3) as the global parameters. It also picks x1, x2, x3, y1, y2, y3, z1, z2, z3

$← Z9
p

and sets ci = gxi
i g

x3
3 , di = gyii g

y3

3 , hi = gzii g
z3
3 , for i = 1, 2. It chooses a collision-resistant hash function

HK and provides A with the encryption key ek = (c1, c2, d1, d2, h1, h2,HK).

• In the initial game G0,

– A’s decryption queries are answered by B, simply using the decryption key dk.

– WhenA submits the first challenge vectors ~M0 = (M0,1, . . . ,M0,n) and ~M1 = (M1,1, . . . ,M1,n),

with a label `∗, B chooses a random bit b
$← {0, 1} and encrypts ~Mb:

∗ it chooses two random vectors ~r∗, ~s∗
$← Znp

∗ it defines C∗i = (u∗i = (g
r∗i
1 , g

s∗i
2 , g

r∗i +s∗i
3 ), e∗i = Mb,i · h

r∗i
1 h

s∗i
2 , v

∗
i = (c1d

ξ∗

1 )r
∗
i (c2d

ξ∗

2 )s
∗
i ), for

i = 1, . . . , n, where the v∗i ’s are computed with ξ∗ = HK(`∗,u∗1, . . . ,u
∗
n, e
∗
1, . . . , e

∗
n), and

C∗ = (C∗1 , . . . , C∗n).

– WhenA submits the second challenge vectors ~N0 = (N0,1, . . . , N0,n) and ~N1 = (N1,1, . . . , N1,n),
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∗ B chooses two random vectors ~a∗,~b∗
$← Znp

∗ it defines C′∗i = (~α∗i = (g
a∗i
1 , g

b∗i
2 , g

a∗i +b∗i
3 ), β∗i = Nb,i · h

a∗i
1 h

b∗i
2 , γ

∗
i = (c1d

ξ∗

1 )a
∗
i (c2d

ξ∗

2 )b
∗
i ), for

i = 1, . . . , n, where the γ∗i ’s are computed with the above ξ∗ = HK(`∗,u∗1, . . . ,u
∗
n, e
∗
1, . . . , e

∗
n),

and C′∗ = (C′∗1 , . . . , C′∗n ).

– When A returns b′, B outputs b′ ?= b.

Pr
0

[1← B] = Pr
0

[b′ = b] = (Advind−pd−ccan−DLCS (A)− 1)/2.

G1 We assume t = r+s mod p, to encrypt the challenge vectors ~Mb and ~Nb, B does as above, excepted

for C∗1 : C∗1 = (u∗1 = (u1, u2, u3), e∗i = Mb,1 · uz11 u
z2
2 u

z3
3 , v

∗
1 = ux1+ξ∗y1

1 ux2+ξ∗y2

2 ux3+ξ∗y3

3 ), which
actually defines r∗1 = r and s∗1 = s.

u∗1 = (g
r∗1
1 , g

s∗1
2 , g

r∗1+s∗1
3 ) e∗1 = Mb,1 · (g

r∗1
1 )z1(g

s∗1
2 )z2(g

r∗1+s∗1
3 )z3 = Mb,1 · h

r∗1
1 h

s∗1
2

v∗1 = (g
r∗1
1 )x1+ξ∗y1(g

s∗1
2 )x2+ξ∗y2(g

r∗1+s∗1
3 )x3+ξ∗y3 = (c1d

ξ∗

1 )r
∗
1 (c2d

ξ∗

2 )s
∗
1

The challenge ciphertexts are identical to the encryptions of ~Mb and ~Nb in G0. Decryption queries
are still answered the same way. Hence the gap between this game and the previous game is 0.

Pr
1

[1← B] = Pr
0

[1← B] = (Advind−pd−ccan−DLCS (A)− 1)/2.

G2 We now assume that t
$← Zp (a random tuple). First, we have to check that the incorrect compu-

tation of v∗1 does not impact the probability to reject invalid ciphertexts, then we prove that e∗1 is
totally independent of Mb,1.

1. About the validity checks, ux1+ξy1

i,1 ·ux2+ξy2

i,2 ·ux3+ξy3

i,3
?= vi, where ξ = H(k`,u1, . . . ,un, e1, . . . , en),

three cases can appear with respect to the challenge ciphertext C∗ = ((u∗1, e
∗
1, v
∗
1), . . . , (u∗n, e

∗
n, v
∗
n)):

(a) (`,u1, e1, . . . ,un, en) = (`∗,u∗1, e
∗
1, . . . ,u

∗
n, e
∗
n), then necessarily, for some i, vi 6= v∗i , then

the check on index i will fail since one value only is acceptable;

(b) (`,u1, e1, . . . ,un, en) 6= (`∗,u∗1, e
∗
1, . . . ,u

∗
n, e
∗
n), but ξ = ξ∗, then the adversary has gener-

ated a collision for the hash function HK .

(c) (`,u1, e1, . . . ,un, en) 6= (`∗,u∗1, e
∗
1, . . . ,u

∗
n, e
∗
n), and ξ 6= ξ∗: the ciphertext should be

accepted iff vi = ux1+ξy1

i,1 · ux2+ξy2

i,2 · ux3+ξy3

i,3 , for i = 1, . . . , n. To make it acceptable, if we

denote g2 = gβ2

1 and g3 = gβ3

1 , we indeed have

logg1
c1 = x1 +β3x3

logg1
d1 = y1 +β3y3

logg1
c2 = β2x2 +β3x3

logg1
d2 = β3y2 +β3y3

with in addition,

logg1
v∗1 = rx1 + sβ2x2 + tβ3x3 + rξ∗y1 + sξ∗β2y2 + tξ∗β3y3

logg1
v∗i = r∗i x1 + s∗i β2x2 + (r∗i + s∗i )β3x3 + r∗i ξ

∗y1 + s∗i ξ
∗β2y2 + (r∗i + s∗i )ξ

∗β3y3

= r∗i logg1
c1 + s∗i logg1

c2 + ξ∗r∗i logg1
d1 + ξ∗s∗i logg1

c2 for i = 2, . . . , n

logg1
γ∗i = a∗i x1 + b∗i β2x2 + (a∗i + b∗i )β3x3 + a∗i ξ

∗y1 + b∗i ξ
∗β2y2 + (a∗i + b∗i )ξ

∗β3y3

= a∗i logg1
c1 + b∗i logg1

c2 + ξ∗a∗i logg1
d1 + ξ∗b∗i logg1

c2 for i = 1, . . . , n

The 2n − 1 last relations are thus linearly dependent with the 4 above relations, hence
remains the useful relations

logg1
c1 = x1 +β3x3 (1)

logg1
d1 = y1 +β3y3 (2)

logg1
c2 = β2x2 +β3x3 (3)

logg1
d2 = β2y2 +β3y3 (4)

logg1
v∗1 = rx1 +sβ2x2 +tβ3x3 +rξ∗y1 +sξ∗β2y2 +tξ∗β3y3 (5)
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One can note that for v∗1 to be predictable, because of the x1, x2 and y1, y2 components,
we need to have (5) = r (1) + s (3) + rξ∗ (2) + sξ∗ (4), and then t = r + s, which is not
the case, hence v∗1 looks random: in this game, v∗1 is perfectly uniformly distributed in G.
Furthermore, for any vi in the decryption query, if ui = (gr

′

1 , g
s′

2 , g
t′

3 ) is not a linear triple,
then it should be such that

logg1
vi = r′x1 + s′β2x2 + t′β3x3 + r′ξy1 + s′ξβ2y2 + t′ξβ3y3.

Since the matrix
1 0 β3 0 0 0
0 0 0 1 0 β3

0 β2 β3 0 0 0
0 0 0 0 β2 β3

a bβ2 cβ3 aξ∗ bξ∗β2 cξ∗β3

r′ s′β2 t′β3 r′ξ s′ξβ2 t′ξβ3

 has determinant β2
2β

2
3(ξ∗−ξ)(t−r−s)(t′−r′−s′) 6= 0,

then the correct value for vi is unpredictable: an invalid ciphertext will be accepted with
probability 1/p.

2. Let us now consider the mask uz11 u
z2
2 u

z3
3 : its discrete logarithm in basis g1 is rz1+sβ2z2+tβ3z3,

whereas the informations about (z1, z2, z3) are h1 = gz11 g
z3
3 and h2 = gz22 g

z3
3 . The matrix 1 0 β3

0 β2 β3

r sβ2 tβ3

 has determinant β2β3(t− r − s)(t′ − r′ − s′) 6= 0,

then the value of the mask is unpredictable: in this game, e∗1 is perfectly uniformly distributed
in G.

Since the unique difference between the two games is the linear/random tuple, unless a collision is
found for HK (probability bounded by SucccollH (t)) and or an invalid ciphertext is accepted (proba-
bility bounded by qd/p), then

Pr
2

[1← B] ≥ Pr
1

[1← B]− Advdlinp,G,g(t)− SucccollH (t)− qd
p
.

G3 To encrypt the challenge vectors ~Mb and ~Nb, B does as above, excepted for C∗1 : for a random t∗1
$←

Zp, u∗1 = (g
r∗1
1 , g

s∗1
2 , g

t∗1
3 ), e∗1

$← G, and v∗1
$← G. As just explained, this is perfectly indistinguishable

with the previous game:

Pr
3

[1← B] = Pr
2

[1← B] ≥ (Advind−pd−ccan−DLCS (A)− 1)/2− Advdlinp,G,g(t)− SucccollH (t)− qd
p
.

G4 To encrypt the challenge vectors ~Mb and ~Nb, B does as above, excepted for C∗: for a random vector
~t∗

$← Znp , for i = 2, . . . , n: u∗i = (g
r∗i
1 , g

s∗i
2 , g

t∗i
3 ), e∗i

$← G, and v∗i
$← G. Thus replacing sequentially

the C∗i ’s by random ones, as we’ve just done, we obtain

Pr
4

[1← B] ≤ Pr
3

[1← B]− (n− 1)

(
Advdlinp,G,g(t)− SucccollH (t)− qd

p

)
.

G5 To encrypt the challenge vectors ~Mb and ~Nb, B does as above, excepted for C′∗: for a random vector

~c∗
$← Znp , for i = 1, . . . , n: ~α∗1 = (g

a∗i
1 , g

b∗i
2 , g

c∗i
3 ), β∗i

$← G, and γ∗i
$← G. Thus replacing sequentially

the C′∗i ’s by random ones, as we’ve just done, we obtain

Pr
5

[1← B] ≤ Pr
4

[1← B]− n
(
Advdlinp,G,g(t)− SucccollH (t)− qd

p

)
.

In this last game, it is clear that Pr5[1← B] = 1/2, since ( ~Mb, ~Nb) is not used anymore:

Advind−pd−ccan−DLCS (A)− 1

2
− 2n×

(
Advdlinp,G,g(t)− SucccollH (t)− qd

p

)
≤ 1

2
,

which concludes the proof. �
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Multi Linear Cramer-Shoup Encryption (n− LCS)

The Linear Cramer-Shoup can be adapted the same way, to encrypt message vectors (Mi)i∈J1,nK, IND− CCA2
protected, with a common ξ:

• Setup(1K): generates a group G of order p, with three independent generators (g1, g2, g3)
$← G3;

• KeyGen(param): generates dk = (x1, x2, x3, y1, y2, y3, z1, z2, z3)
$← Z9

p, and sets, for i = 1, 2, ci =
gxi
i g

x3
3 , di = gyii g

y3

3 , and hi = gzii g
z3
3 . It also chooses a collision-resistant hash function HK . The

encryption key is pk = (c1, c2, d1, d1, h1, h2,HK).

• Encrypt(`, pk, ~M ;~r,~s): for two vectors ~M ∈ Gn and vectors ~r,~s ∈ Znp , computes

C = (C1, . . . , Cn), where Ci = (ui = (gri1 , g
si
2 , g

ri+si
3 ), ei = Mi · hri1 h

si
2 , vi = (c1d

ξ
1)ri(c2d

ξ
2)si)

where the vi’s are computed afterwards with ξ = HK(`,u1, . . . ,un, e1, . . . , en). It outputs C.

• Decrypt(`, dk, C): one first parses C = (C1, . . . , Cn), where Ci = (ui, ei, vi) for i ∈ J1, nK, computes

ξ = HK(`,u1, . . . ,un, e1, . . . , en) and checks whether, for i ∈ J1, nK, ux1+ξy1

i,1 · ux2+ξy2

i,2 · ux3+ξy3

i,3
?=

vi. If the equality holds, one computes Mi = ei/(u
z1
i,1u

z2
i,2u

z3
i,3) and outputs ~M = (M1, . . . ,Mn.

Otherwise, one outputs ⊥.

LCS is the particular case where n = 1.
With the same techniques as above, we can show that this scheme is indistinguishable against chosen-

ciphertext attacks, under the DLin assumption and if one uses a collision-resistant hash function (see
Theorem 2.6.5, page 48).

Multi Double Cramer-Shoup Encryption (n− DCS)

Similarly we can encrypt pairs of message vectors (Mi, Ni)i∈J1,nK, partially IND− CCA2 protected, with
a common ξ:

• Setup(1K): generates a group G of order p, with two independent generators (g1, g2)
$← G3;

• KeyGen(param): generates dk = (x1, x2, y1, y2, z)
$← Z5

p, and sets c = gx1
1 gx2

2 , d = gy1

1 gy2

2 , and
h = gz1 . It also chooses a collision-resistant hash function HK . The encryption key is pk =
(c, d, g1, g2,HK).

• Encrypt(`, pk, ~M, ~N ;~r,~a): for two vectors ~M, ~N ∈ Gn and two vectors ~r,~a ∈ Znp , computes

C = (C1, . . . , Cn), where Ci = (ui = (gri1 , g
ri
2 ), ei = Mi · hri , vi = (cdξ)ri),

C′ = (S1, . . . , Sn), where Si = (αi = (gai1 , g
ai
2 ), βi = Ni · hai , γi = (cdξ)ai),

where the vi’s and γi’s are computed afterwards with ξ = HK(`,u1, . . . ,un, e1, . . . , en). Note that
once again ξ depends on the C parts only, not on C′. It outputs (C, C′).

• Decrypt(`, dk, C, C′): one first parses C = (C1, . . . , Cn) and C′ = (S1, . . . , Sn), where Ci = (ui, ei, vi)
and Si = (αi, βi, γi), for i ∈ J1, nK, computes ξ = HK(`,u1, . . . ,un, e1, . . . , en) and checks whether,

for i ∈ J1, nK, ux1+ξy1

i,1 ·ux2+ξy2

i,2
?= vi (but not for the γi’s). If the equality holds, one computes Mi =

ei/(u
z
i,1) and Ni = βi/(α

z
i,1), and outputs ( ~M = (M1, . . . ,Mn), ~N = (N1, . . . , Nn)). Otherwise, one

outputs ⊥.

• PDecrypt(`, dk, C): is a partial decryption algorithm that does as above but working on the C part

only to get ~M = (M1, . . . ,Mn) or ⊥.

DCS denotes the particular case where n = 1:

DCS(`,M,N ; r, a) =

(
C = (u = (gr1, g

R
2 ), e = M · hr, v = (cdξ)r

C′ = (α = (ga1 , g
a
2 ), β = N · ha, γ = (cdξ)a)

)
,

where
ξ = HK(`,u, e)

This scheme is indistinguishable against partial-decryption chosen-ciphertext attacks, where a partial-
decryption oracle only is available, but even when we allow the adversary to choose ~M and ~N in two
different steps (see the security game below), under the DDH assumption and if one uses a collision-
resistant hash function (and this can be proven in a similar fashion to Theorem 2.6.5, page 48).
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2.6.6 Commitment à la Lindell

Recently, Lindell [Lin11] proposed a highly efficient UC commitment. Our commitment strongly relies
on it, but does not need to be UC secure. We will then show that the decommitment check can be
done in an implicit way with an appropriate smooth projective hash function. Basically, the technique
consists in encrypting M in C = (u, e, v) = LCS(`,M ; r, s), also getting ξ = HK(`,u, e), and then
encrypting 1G in C′ = LCS∗(`, 1G, ξ; a, b), with the same ξ. For a given challenge ε, we can see C × C′ε =
LCS∗(`,M, ξ; r + εa, s+ εb), where the computations are done component-wise, as an encryption of M ,
still using ξ. Note that Lindell used Cε × C′, but our choice seems more natural, since we essentially
re-randomize the initial encryption C, but we have to take care of choosing ε 6= 0. It makes use of an
equivocable commitment: the Pedersen commitment [Ped92], already defined in Section 2.3.2, page 26.

Description

Our n-message vector commitment, which includes labels, is depicted on Figure 2.3, where the com-
putation between vectors are component-wise. Note that for this commitment scheme, we can use
~ε = (ε, . . . , ε). For the version with SPHF implicit verification Section 5.3.2, page 100, according to the

language, one can have to use independent components ~ε
$← (Z∗p)n.

• Setup(1K): A group G of prime order p, with ten independent generators

(g1, g2, g3, h1, h2, c1, c2, d1, d2, ζ)
$← G10, a collision-resistant hash function HK , and a re-

versible mapping G from {0, 1}K to G. One can denote ek = (c1, c2, d1, d1, h1, h2,HK);

• Commit(`, ~m;~r,~s,~a,~b, t): for (~r,~s,~a,~b, t)
$← Z4n+1

p , with ~M = G(~m)

(C, C′)← n− DLCS(`, ek, ~M, (1G)n;~r,~s,~a,~b)
χ = HK(~m, C′),
C′′ = gt1ζ

χ C, C′′−−−−−−−−−−−−−−−→
~ε←−−−−−−−−−−−−−−− ε

$← Z∗p, ~ε← (ε, . . . , ε)
∏
i εi

?

6= 0

~z = (~r + ~ε× ~a,~s+ ~ε×~b)

• Decommit(`, C, C′, ~ε): C′, t, ~m, z−−−−−−−−−−−−−−−→ ~M = G(~m), χ = HK(~m, C′)
compute ξ from C, C′′ ?= gt1ζ

χ

C × C′~ε ?= n− LCS∗(`, ~M, ξ; zr, zs)

Figure 2.3: n− DLCS Commitment Scheme

Analysis

Let us briefly show the properties of this commitment:

• Hiding property: ~m is committed in the Pedersen commitment C′′, that does not leak any informa-
tion, and in the n−LCS encryption C, that is indistinguishable, even with access to the decryption
oracle (extractability). This also implies non-malleability.

• Binding property: ~m is committed in the Pedersen commitment C′′, that is computationally bind-
ing.

• Extractability: using the decryption key of the LCS encryption scheme, one can extract ~M from C,
and thus ~m. Latter, one has to open the ciphertext CC′~ε with ~M ′ = G(~m′), which can be different

from ~M in the case that C′ contains ~N 6= (1G)n. But then ~M ′ = ~M × ~N~ε, that is unpredictable at
the commit time of C′′. With probability at most 1/p, one can open the commitment with a value
~m′ different from ~m, if this value ~m′ has been correctly anticipated in C′′.

• Equivocability: if one wants to open with ~m′, one computes ~M ′ = G(~m′), ~N = ( ~M ′/ ~M)1/~ε,

encrypts ~N in C′ = n − LCS∗(`, ~N, ξ;~a,~b), and updates χ and t, using the Pedersen trapdoor for
equivocability.

?
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In this part we build several signature protocols while relying heavily on the Groth-Sahai methodology.
We can divide this work into two main themes. In the first part, we work around Group Signatures [Cv91],
while in the second we will focus on a new primitive closely related to Blind Signatures [Cha83]. The
interesting part is the shift of focus between the first schemes where our concern is to protect the
anonymity of a signer and the last ones where we are more concerned about the message confidentiality.

First in order to allow a member of a group to sign anonymously on behalf of a group, we are going
to hide his identity with commitments, and then use the Gorth-Sahai methodology to show that the
committed user is registered. However we are then interested in adding some additional capabilities
to the user and tracing authorities. We first follow the idea of Traceable Signatures [KTY04], and
allow some delegation of the tracing capacities. This requires us to create an additional trap in the
signature, and prove that this trap is correctly generated. Doing so, we also allow user to step-in and
step-out of a signature, this simply means that a user is able to recognize/disavow a signature as his own
without having to require an authority to trace it. We further upgrade this scheme to present the first
instantiation of List Signatures [CSST06] where anyone is able to detect if a signer has signed twice in
the same time period, without of course opening the signatures.

Then we build protocols to sign a hidden message and prove its knowledge, once again the Groth-
Sahai methodology will be the cornerstone of our construction. To do so we present a neat primitive
Signature on Randomizable Ciphertexts which allows us to encrypt/commit a message and then sign
this object, and then later we show this can be handled like a encryption/commitment to a signature
on the plaintext. One of the most important point is that if the user is able to decrypt/decommit, he
can now recover a valid signature on the plaintext. This signature is a regular signature with the same
randomization property as the starting signature scheme and so we manage to build a round-optimal
blind signature scheme which outputs a regular signature. We then further work around this construction
to allow partial blindness, and even some homomorphic properties thanks to one of our previous result
on the Waters function programmability (cf Section 2.6.4, page 42).
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In this chapter we use the Groth-Sahai methodology, presented earlier in details in Section 2.4.1,
page 29, to solve various open problems while staying compatible with our batching techniques.

In this chapter, we will present the first instantiation of List Signatures in the standard model. We will
be using Groth-Sahai methodology to protect the anonymity of the signer while preserving unforgeability.

A first step toward this goal is to achieve traceable group signatures way more efficient than the
previous ones, while providing a new functionality. Users are now able to step both in and out, in other
words we allow them to acknowledge they signed a signature or prove they did not. We keep the classical
requirements of such signatures, we thus have an opener able to know who did a signature and prove it,
we have tracing authorities specialized on one identity, so they can only say (and prove) if a signature
was done by a specific user Ui, we have a group manager (possibly distinct from the previous authorities)
who can manage users in the group.

Contrarily to the rest of this thesis, we will do this set of instantiations in the asymmetric setting.
In the symmetric approach, we would have one less trapdoor, we would either have an easy pairing or
no kind of pairing at all, while here we want some kind of intermediate result, as we will need some
pairing capacities to allow tracing operations, while restraining others to protect the anonymity. Thanks
to the missing efficient homomorphism between G1 and G2, the asymmetric setting provides this extra
capacities. To be compatible with the methodology we will need to rely on SXDH, even if our non-
anonymous scheme would only require XDH.

3.1 Group Signatures

A group signature scheme [Cv91] is a protocol which lets a member of a group individually issue signatures
on behalf of the group, in an anonymous but revocable way: an opener is able to revoke anonymity of the
actual signer in case of abuse. The members of the group are not trusted. Several steps have been made
in the study of those protocols: Bellare, Micciancio and Warinschi [BMW03] gave formal definitions
of the security properties of group signatures (the BMW model), and proposed a (unpractical) scheme
under general assumptions. Later, Bellare, Shi and Zhang [BSZ05] extended this model to dynamic
groups (the BSZ model), emphasizing the importance of unforgeability and anonymity. Boneh, Boyen
and Shacham [BBS04] proposed a very efficient group signature scheme using bilinear maps, in the
random oracle model, but that does not fit within these models.

Group signatures guarantee anonymity, which means that nobody (except the opener) can link the
signature to the signer, but also unlinkability, which means that one cannot tell whether two signatures
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have been produced by the same user.
We use similar notations as [BSZ05] for the BSZ model to define, in a game-based way, the security

notions. In a group signature scheme, there are several users, which are all registered in a PKI. We thus
assume that each user Ui owns a pair (usk[i], upk[i]) certified by the PKI. There is a group manager,
also known as Issuer, since he will issue certificates to grant access to the group, and an Opener that
will be able to revoke anonymity, and thus trace back the actual signers. Those two authorities are not
necessarily the same. To be precise, a group signature scheme is a sequence of (interactive) protocols:

Group Signature
p GS = (Setup, Join,Sign,Verif,Open, Judge):

• Setup(1K): this algorithm generates the global parameters of the system, the public key pk and the
private keys: the master secret key msk given to the group manager, and the opening key skO sent
to the opener;

• Join(Ui): this is an interactive protocol between a user Ui (using his secret key usk[i]) and the group
manager (using his private key msk). At the end of the protocol, the user obtains a signing key
sk[i] (or group membership certificate), and the group manager adds the user to the registration
list, storing some information in Reg[i].

• Sign(pk, sk[i],m;µ): To sign a message m, the user uses his secret key sk[i] and some randomness
µ, to output a signature σ valid under the group public key pk

• Verif(pk,m, σ): anybody should be able to verify the validity of the signature σ on the message m,
w.r.t. the public key pk. This algorithm thus outputs 1 if the signature is valid, and 0 otherwise.

• Open(skO, pk,m, σ): granted the opening key skO, for a valid signature σ w.r.t. the public key pk,
the Opener can provide the identity signer. It thus outputs the user i, together with a proof Π.

• Judge(pk,m, σ, i,Π): this algorithm publicly checks the claim of the opener.

y

3.1.1 Security Notions

The correctness notion guarantees that honest users should be able to generate valid signatures, and
the opener should then be able to get the identity of the signers, and provide a convincing proof for the
judge. In the following experiments that formalize the security notions, the adversary can run the Join
protocol:

• either through the joinP-oracle (passive join), which means that it creates an honest user for whom
it does not know the secret keys: the index i is added to the HU (Honest Users) list. The adversary
gets back the public part of the certificate pk[i];

• or through the joinA-oracle (active join), which means that it interacts with the group manager to
create a user it will control: the index i is added to the CU (Corrupted Users) list. The adversary
gets back the whole certificate pk[i], and sk[i].

For users whose secret keys are known to the adversary, we let the adversary play on their behalf. For
honest users, the adversary can interact with them, granted some oracles:

• corrupt(i), if i ∈ HU, provides the secret key sk[i] of this user. The adversary can now control it.
The index i is then moved from HU to CU;

• sign(i,m), if i ∈ HU, plays as the honest user i would do in the signature process. Then i is
appended to the list S[m].

Traceability and Non-Frameability

Traceability (see Figure 3.1, page 57 (a)) says that nobody should be able to produce a valid signature
that cannot be opened in a convincing way. Furthermore, non-frameability (see Figure 3.1, page 57 (b))
guarantees that no dishonest player (even the authorities, i.e. the Group Manager and the Opener, hence
the keys msk and skO provided to the adversary) will be able to frame an honest user: an honest user that
does not sign a message M should not be convincingly declared as a possible signer, non-frameability
also shows that the group manager can not cheat. We thus say that:
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(a) Experiment ExptrGS,A(K)
1. (pk,msk, skO)← Setup(1K)
2. (m,σ)← A(pk : joinA, joinP, corrupt, sign, open)
3. IF Verif(pk,m, σ) = 0, RETURN 0
4. IF ∃j 6∈ CU ∪ S[m],

Open(pk,m, σ, skO) = (j,Π)
RETURN 1

5. ELSE RETURN 0

AdvtrGS,A(K) = Pr[ExptrGS,A(K) = 1]

(b) Experiment ExpnfGS,A(K)
1. (pk,msk, skO)← Setup(1K)
2. (m,σ)← A(pk,msk, skO : joinP, corrupt, sign)
3. IF Verif(pk,m, σ) = 0 RETURN 0
4. IF ∃i ∈ HU \ S[m],

Open(pk,m, σ, skO) = (i,Π)
RETURN 1

5. ELSE RETURN 0

AdvnfGS,A(K) = Pr[ExpnfGS,A(K) = 1]

Figure 3.1: Unforgeability Notions

• GS is traceable if, for any polynomial adversary A, the advantage AdvtrGS,A(K) is negligible;

• GS is non-frameable if, for any polynomial adversary A, the advantage AdvnfGS,A(K) is negligible.

In both games, the adversary generates a signature σ on a message m of its choice. In the latter game,
the adversary itself can play the role of the opener, trying to frame an honest user i with a proof Π,
hence (i,Π) in its output.

Anonymity: Given two of honest users i0 and i1, the adversary should not have any significant ad-
vantage in guessing which one of them have issued a valid signature.

Experiment Expanon−bGS,A (K)

1. (pk,msk, skO)← Setup(1K)
2. (m, i0, i1)← A(FIND, pk,msk : joinP, corrupt, sign)
3. σ ← Sign(pk, ib,m, sk[i])
4. b′ ← A(GUESS, σ : joinP, corrupt, sign)
5. IF i0 6∈ HU OR i1 6∈ HU RETURN 0
6. RETURN b′

AdvanonGS,A(K) = Pr[Expanon−1
GS,A (K) = 1]− Pr[Expanon−0

GS,A (K) = 1]

Figure 3.2: Anonymity Notions

The adversary can interact with honest users as before (with sign and corrupt), but the challenge
signature is generated using the interactive signature protocol Sign, where the adversary plays the role
of the corrupted users, but honest users are activated to play their roles.

GS is anonymous if, for any polynomial adversary A, the advantage AdvanonGS,A(K) is negligible. The
full-anonymity notion means that anonymity is guaranteed even if the adversary is granted access to the
open-oracle (excepted on the challenge signature), however we won’t achieve it in this chapter.

3.2 Traceable Signatures

3.2.1 Security Notions for Traceable Signatures

This model supersedes regular group signatures, so we will continue to use notations from the BSZ model
and extend them when required. We follow the original model from traceable signatures [KTY04] with
some improvements, but with similar notations and terminology. We will mainly stress the differences.

In a traceable signature scheme, there are several users, which are all registered in a PKI. We thus
assume that any user Ui owns a pair (usk[i], upk[i]) of secret and public keys, certified by the PKI. There
are several authorities:

• the Group Manager : it issues certificates for users to grant access to the group.

• the Opener : it is able to open or trace any signature. The former means that it can learn who is
the actual signer of a given signature while the latter decides, on a given signature and an alleged
signer, whether the signature has really been generated by this signer or not. It is also able to
delegate the latter tracing capability but for specific users only. To this aim, it reveals a trapdoor
to a Sub-Opener. The latter gets the ability to trace a specific user only (decide whether the signer
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associated to the trapdoor is the actual signer of a signature) without learning anything about the
other users.

Those two authorities can be the same party, as in [LY09]. However, since this is a stronger model,
but we prefer to separate the roles as in [BSZ05].

In the initial model, users also have the capability to Claim a signature, i.e. they are able to publicly
confirm they are the author of a given signature. We enhance the functionalities with a Deny algorithm,
that allows a user to prove that he is not the actual author of a given signature. Both are combined in a
Step algorithm, with Step− in and Step− out procedures to confirm and deny a signature respectively,
using the signing key only.

A Traceable signature scheme (with stepping capacities) is defined by a sequence of (interactive)
protocols, TS = (Setup, Join,Sign,Verif,Open,Reveal,Trace,Step):

While in many security models, there is an additional party called “Judge” that verifies all the claims,
we are going to omit it in the following, as anyone will be able to directly verify the various claims.

While Setup, Join,Sign,Verif,Open are similar to those in Group Signatures, Reveal,Trace,Step are
new:

• Reveal(pk, i, skO): This algorithm, with input skO and a target user i, outputs a tracing key tk[i]
specific to the user i, together with a proof ΠE confirming this tk[i] is indeed a tracing key of the
user i.

• Trace(pk,m, σ, tk[i]): Using the sup-opener key tk[i] for user i, this algorithm outputs 1 iff σ is a
valid signature produced by i, together with a proof ΠsO confirming the decision.

• Step(pk,m, σ, sk[i]): Using the user’s secret key sk[i], this algorithm outputs 1 iff σ if a valid
signature produced by i, together with a proof Πc confirming the claim.

Notation
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Figure 3.3: An Extended Traceable Signature Scheme

Traceable Signature

Traceable signatures were introduced by Kiayias, Tsiounis and Yung in [KTY04] as an improvement of
group signatures (defined in [Cv91]). In addition to the classical properties of a group signature scheme,
that allows users to sign in the name of the group, while the opener only is able to trace back the actual
signer, traceable signatures allow the opener to delegate the tracing decision for a specific user without
revoking the anonymity of the other users: the opener can delegate its tracing capability to sub-openers,
but against specific signers without letting them trace other users. This gives two crucial advantages:
on the one hand tracing agents (sub-openers) can run in parallel; on the other hand, honest users do
not have to fear for their anonymity if authorities are looking for signatures produced by misbehaving
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users only. This is in the same vein as searchable encryption [ABC+05], where a trapdoor, specific to a
keyword, allows to decide whether a ciphertext contains this keyword or not, and provides no information
about ciphertexts related to other keywords.

The first efficient traceable signatures, provably secure in the standard model, were introduced by
Libert and Yung in [LY09].

Correctness: The correctness notion guarantees that honest users should be able to generate valid
signatures, those notions are direct extensions of the classic ones with an additional authority and also
consistency between open, trace and step algorithms. More precisely the correctness guarantees that

• a message signed by an honest user i should

– successfully pass the verification process;

– open to i;

– lead to a positive answer for the trace and step procedures under user i’s related keys;

• as the traceability property of group signatures, for any valid signature σ, the opening algorithm
should designate some user. And the latter should be accepted by the trace and step procedures.

In the following experiments that formalize the security notions, the adversary can run the Join
protocol, either passively (receives only public values, as seen by an eavesdropper) or actively (receives
all the values, as the legitimate user):

• either through the joinP-oracle (passive join), which means that it creates an honest user for whom
it does not know the secret keys: the index i is added to the HU (Honest Users) list;

• or through the joinA-oracle (active join), which means that it interacts with the group manager to
create a user it will control: the index i is added to the CU (Corrupted Users) list.

The adversary is given the master key (the group manager is corrupted), and so does not need access
to the joinA oracle since it can simulate it by itself, to create corrupted users (that are not necessarily
in CU). After a user is created, the adversary plays the role of corrupted users, and can interact with
honest users, granted the previous oracles, and also new ones:

• open(m,σ), if (m,σ) is valid, returns the identity i of the signer. Then (i,m, σ) is appended to the
list O of opened signatures;

• reveal(i), if i ∈ HU, returns the tracing key tk[i] for the user i. Then i is appended to the list R of
the revealed users;

• tr(i,m, σ), if i ∈ HU and (m,σ) is valid, returns 1 iff i is the signer who made σ on m is i. Then
(i,m, σ) is appended to the list T of traced signatures;

• step(i,m, σ), if i ∈ HU, plays as the honest user i would do to step in/out of the signature σ on
message m.

For a corrupted user i, with the secret key sk[i], the adversary can run itself the Step and Trace procedures,
and or course sign too. We thus have the following sets:

• I, the set of registered users, which is the disjunction of HU and CU the honest and dishonest users
respectively;

• S, the list of generated signatures (i,m, σ), and S[m] = {i|(i,m, σ) ∈ S};

• O, the list of opened signatures (i,m, σ), and O[m] = {i|(i,m, σ) ∈ O};

• R, the list of revealed users i;

• T , the list of traced signatures (i,m, σ), and T [m] = {i|(i,m, σ) ∈ T }.

A signature is identified by a user-message pair and not σ itself in those sets because we do not expect
strong unforgeability. In our instantiations, signatures will be re-randomizable: it is easy for anyone to
produce a new valid signature σ′ on a message m from a previous one σ, but on the same message. The
subsequent relaxation on the security has already been used in [LY09] for traceable signatures.
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Soundness: This is the main security notion that defines two unforgeability properties. The security
games are shortened thanks to the correctness which implies that the opening, the tracing and the
stepping processes are consistent:

• Misidentification, which means that the adversary should not be able to produce a non-trivial valid
signature that could not be opened to a user under its control. The adversary wins if Open either
accuses an unknown user or has an invalid proof, so returning ⊥. (see Figure 3.4, page 60 (a));

• Non-Frameability, which means that the adversary should not be able to produce a non-trivial
valid signature corresponding (that opens) to an honest user even if the authorities are corrupted
(see Figure 3.4, page 60 (b));

TS is Sound if, for any polynomial adversary A, both advantages AdvMisI
TS,A(K) and AdvnfTS,A(K) are neg-

ligible. The first notion (Misidentification) guarantees traceability (the Open algorithm always succeeds

(a) Experiment ExpMisI
TS,A(K)

1. (pk,msk, skO)← Setup(1K)
2. (m,σ)← A(pk : joinP, joinA, corrupt, sign, reveal)
3. IF Verif(pk,m, σ) = 0, RETURN 0
4. IF Open(pk,m, σ, skO) = ⊥, RETURN 1
5. IF ∃j 6∈ CU ∪ S[m],

Open(pk,m, σ, skO) = (j,Π)
RETURN 1

6. ELSE RETURN 0

AdvMisI
TS,A(K) = Pr[ExpMisI

TS,A(K) = 1]

(b) Experiment ExpnfTS,A(K)
1. (pk,msk, skO)← Setup(1K)
2. (m,σ)← A(pk,msk, skO : joinP, corrupt, sign)
3. IF Verif(pk,m, σ) = 0 RETURN 0
4. IF ∃i ∈ HU \ S[m],

Open(pk,m, σ, skO) = (i,Π)
RETURN 1

5. ELSE RETURN 0

AdvnfTS,A(K) = Pr[Expnfnf,A(K) = 1]

Figure 3.4: Security Notions: Soundness

on valid signatures) but also honest users cannot be framed when the group manager is honest. The
second one (non-frameability) is somewhat stronger since it allows the group manager to be corrupted,
but would not guarantee by itself traceability.

Anonymity: We now address the privacy concerns. For two distinct signers i0, i1, chosen by the
adversary, the latter should not have any significant advantage in guessing if the issued signature comes
from i0 or i1. We can consider either a quite strong anonymity notion (usually named full-anonymity)
where the adversary is allowed to query the opening oracle (resp. tracing, stepping) on any signatures,
excepted signatures that are equivalent to the challenge signature with respect to the signers i0 or i1; or
the classical anonymity notion, where open, tr and of course reveal are not available to the adversary. TS
is anonymous if, for any polynomial adversary A, the advantage AdvanonTS,A(K) is negligible (see Figure 3.5,
page 60).

Experiment ExpanonbTS,A(K)

1. (pk,msk, skO)← Setup(1K)
2. (m, i0, i1)← A(FIND, pk,msk : joinP, corrupt, sign, open∗, tr∗, reveal∗, step∗)
3. σ ← Sign(pk, i,m, sk[ib])
4. b′ ← A(GUESS, σ : joinA, joinP, corrupt, sign, open∗, tr∗, reveal∗, step∗)
5. IF i0 /∈ HU \ (R∪ T [m] ∪ O[m] ∪ S[m]) OR i1 /∈ HU \ (R∪ T [m] ∪ O[m] ∪ S[m]) RETURN 0
6. ELSE RETURN b′

AdvanonTS,A(K) = Pr[Expanon−1
TS,A (K) = 1]− Pr[Expanon−0

TS,A (K) = 1]

Figure 3.5: Security Notions: Anonymity (open∗ = tr∗ = reveal∗ = step∗ = ∅) and Full-Anonymity
(open∗ = open, tr∗ = tr, reveal∗ = reveal, step∗ = step)

In the following however, our scheme will only fulfil the anonymity requirement, as Groth-Sahai
commitments don’t give us enough freedom in the simulation, precisely they won’t be extractable and
equivocable simultaneously.
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3.2.2 Traceable Group Signatures with Stepping Capabilities

Tools

Here we recall, two classical instantiations of tools we will use specifically in the two following schemes.
First, the Dodis-Yampolskiy Verifiable Random Function, given ` results of the functions, one should
not be able to predict the next one, however a honest user should be able to produce a proof showing
he has indeed computed the correct value, and then a certificate, basically something proving a user has
been registered by a specific authority.

Those new tools will rely on those security hypotheses:

q-Decisional Diffie-Hellman Inverse in G1 (q-DDHI [BB04,DY05])
p Let G1 be a cyclic group of order p generated by g1. The q-DDHI problem consists, given a tuple

(g1, g
γ
1 , . . . , g

γq

1 ) ∈ Gq+1
1 and D ∈ G1, in deciding whether D = g

1/γ
1 or not. y

q-Hybrid Hidden Strong Diffie-Hellman in G1,G2 (q-HHSDH)
pLet G1,G2 be multiplicative cyclic groups of order p generated by g1, g2 respectively. The q-HHSDH prob-
lem consists, given (g1, k, g2, g

γ
2 ) and several partly hidden tuples (gxi

1 , g
xi
2 , yi, (kg

yi
1 )1/(γ+xi))i∈[1,q], in

computing (gx1 , g
x
2 , g

y
1 , g

y
2 , (kg

y
1 )1/γ+x) for a new pair (x, y). y

About that last assumption: intuitively, under KEA1, it can be reduced to a standard q-SDH (Under
KEA, the reduction to q-SDH is similar to the one in [DP06]). It follows the idea of the BB-SDH intro-
duced in [BCC+08]. However, in our construction neither the scalar given is the one involved directly in
the SDH part, nor we give a second group element raised to the power γ. Therefore this new assumption
seems to remain reasonable.

Pseudo Random Function: We will use a variation of the Dodis-Yampolskiy VRF [DY05], introduced
in [CHL05a]. It basically states that for a polynomial number of scalars zi, and a pair (g1, g

x
1 ) ∈ G2

1,

the values g
1/(x+zi)
1 look random and independent. We will use this property to build our identifiers.

In the proof of anonymity, the simulator will be able to choose the zi prior to any interaction with the
adversary so we rely in the framework where the VRF is secure under the q − DDHI assumption.

A verification of a correct computation can be made, if a user can produce a valid gx2 with respect to
gx1 , and gzi2 such that:

e(g
1/(x+zi)
1 , gx2g

zi
2 ) = e(g1, g2) and e(gx1 , g2) = e(g1, g

x
2 ).

Certification: Since our new primitive is quite related to group signatures, we also introduce the
BBS-like certification [BBS04] proposed by Delerablée and Pointcheval [DP06], in order to achieve non-
frameability.

During the Setup, the group manager chooses an additional generator k1 of G1, and a master secret
key msk = γ ∈ Zp. It sets the group public key as(g1, g2, k1,Ω = gγ2 ). During the Join procedure, the
authority chooses an xi for the user, and they choose together yi (so that it is unknown to the group
manager, but known to the user: his secret key). After an interactive process, the user gets his certificate,
(Ai = (k1g

yi
1 )1/(γ+xi), gxi

1 , g
xi
2 , yi), where the verification consists in:

e(Ai,Ωg
xi
2 ) ?= e(k1, g2) · e(g1, g2)yi and e(gxi

1 , g2) ?= e(g1, g
xi
2 ).

We use this certification, because contrarily to the simple BBS certificate this one provides non-
frameability, in the sense that the authority does not learn the whole final certificate, namely yi is known
solely by the user.

Traceable Signature Instantiation

We are first going to describe our construction, without anonymity. The latter security property will be
achieved granted commitments and proofs of validity, that will be easy and efficient since everything fits
within the Groth-Sahai methodology.

1The Knowledge-of-Exponent Assumption was first proposed in [Dam92]. Informally, KEA says that if an adversary
takes g, h generated by Gen and outputs a DDH tuple (ga, ha), then it must know a. This hypothesis is KEA-I
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Setup(1K): The system generates a bilinear group (p,G1,G2,GT , e, g1, g2). One also chooses a generator

k1 of G1, and also independent generators (ui)
$← Gk+1

1 , where k is a polynomial in K to define the Waters
function F .

The group manager chooses a scalar γ
$← Zp for the master key msk = γ, and computes Ω = gγ2 . The

opener produces a computationally binding Groth-Sahai environment with ek ∈ Z2
p as an extraction key,

we will only use the extraction key in G2 in the real world, we will note it α. We will note the commitment
key ck, and commitments under it: C. (Technically, it leads to double ElGamal encryptions). The public
key is then pk = (g1, g2, k1,F ,Ω, ck).

Join(Ui): In order to join the system, a user Ui, with a pair of keys (usk[i], upk[i]) in the PKI, interacts
with the group manager (similarly to [DP06]):

• Ui chooses a random y′i ∈ Zp, computes and sends Y ′i = g
y′i
1 , an extractable commitment of y′i with

a proof of consistency. Actually the trapdoor of the commitment will not be known to anybody,
except to our simulator in the security proof to be able to extract y′i.

• The group manager chooses a new xi ∈ Zp and a random y′′i
$← Zp, computes and sends y′′i ,

Ai = (k1Y
′
i Y
′′
i )1/(γ+xi) and Xi,2 = gxi

2 where Y ′′i = g
y′′i
1 ;

• Ui checks whether e(Ai,Ωg
xi
2 ) ?= e(k1, g2)·e(g1, g2)y

′
i+y

′′
i . He can then compute yi = y′i+y

′′
i . And so

we have e(Ai,ΩXi,1) = e(k1, g2) ·e(g1, g2)yi . He produces a commitment of tk[i] = gyi2 : ei = C(gyi2 )
and a proof of consistency πJ [i], and signs (Ai, Xi,2, g

yi
1 , ei, πJ [i]) under usk[i] into si.

• The group manager verifies si under upk[i] and the given proof, and appends the tuple (i, upk[i], Ai,
Xi, g

yi
1 , ei, πJ [i], si) to Reg. He can then send the last part of the certificate Xi,1 = gxi

1 .

• Ui thus checks, if this new value is consistent with gxi
2 (i.e. e(Xi,1, g2) ?= e(g1, Xi,2)), and then

owns a valid certificate (Ai,Xi, yi), where sk[i] = yi is known to him only. The secrecy of yi will be
enough for the overall security. Note that if Xi,1 is invalid, one can ask for it again. In any case, the
group manager cannot frame the user, but just do a denial of service attack, which is unavoidable.
We expect the Reg array to be constantly certified, i.e. , we expect the Group Manager to sign
every rows. (This will only be required in our step in/out process)

At this stage, Reg[i] = {(i, upk[i], Ai,Xi, g
yi
1 , ei, πJ [i], si)}, and sk[i] = yi.

Sign(sk[i],m; s, z): When a user i wants to sign a message m, he computes the signature of m under
his private key sk[i]. The underlined element are the core of his certificate, any of those can be used to

determine the user identity. First, he picks two scalars s, z
$← Zp, he creates an ephemeral ID(yi, z) =

g
1/(z+yi)
1 , and publishes σ:

(σ0 = ID(yi, z), σ1 = Xi, σ2 = yi, σ3 = Ai, σ4 = (gz1 , g
z
2), σ5 = kz1F(m)s, σ6 = (gs1, g

s
2))

that satisfy the relations:

e(σ0, σ4,2g
σ2

2 ) = e(g1, g2) e(σ1,1, g2) = e(g1, σ1,2)

e(σ3,Ωσ1,2) = e(k1, g2) · e(g1, g
σ2

2 ) e(g
σ2

1 , g2) = e(g1, g
σ2

2 )

e(σ5, g2) = e(k1, σ4,2) · e(F(m), σ6) e(σ4,1, g2) = e(g1, σ4,2)

e(σ6,1, g2) = e(g1, σ6,2).

Basically, σ0 is a certificate of the public key σ4, and (σ5, σ6) is a Waters’ signature of m under this
key, while the three other elements are just the complete certificate. As explained above, for the sake
of clarity, we started with a non-anonymous scheme. To achieve anonymity, some of these tuples are
thereafter committed, but only those that can be linked to a user, basically those we underlined. As
shown in the equations σ2 is a scalar, but needs to be committed in both groups, which will be perfect
for the following proofs as it will be enough to extract both gy1 and gy2 (as required by the previous
computational assumption):

σ = (σ0, C(σ1), C(σ2), C(σ3), σ4, σ5, σ6)

We add the corresponding Groth-Sahai proofs to prove the validity of the previous pairing equations.
The second and third equations, checking if Xi is well-formed and if Ai is well-formed are regular pairing
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product so need each 4 elements in each group, the first one (ID is well formed) is a Linear Pairing
Product, so needs only 2 extra elements in G1, the fourth one (the same yi is committed in two bases)
is a quadratic equation and so can be proven with 2 elements in each group. The last ones do not use
any committed data and so can be directly checked. Overall we will need 22 group elements in G1 and
16 in G2, which is far under the 83 required in the Libert-Yung construction. Especially if we consider
elements in G1 to be half the size of those in G2. (In a standard instantiation an element in G2 is at
most as big as an element in a DLin-based instantiation, so our scheme has only 33 % of the original
communication cost.)

Verif(pk,m, σ): One simply has to verify if all the pairing equations hold.

Open(pk,m, σ, α): The Opener just opens the commitment of Ai in σ3, and then outputs a Groth-Sahai
proof of knowledge of an extraction key α such that e(σ3,1, g2) = e(Ai, g2) · e(σ3,2, g

α
2 ). He checks si,

and depending on its consistency blames the user Ui or the Group Manager or ⊥. This is a linear
multi-scalar multiplication in G1 and so the proof Π is composed of only 1 group element in G1 and is
publicly verifiable.

Reveal(pk, i, α): The Opener verifies πJ [i], and si in Reg and uses α to decrypt ei and extracts the
tracing key: tk[i] = gyi2 . He then send it to the sub-opener together with a publicly verifiable proof
showing that tk[i] is a valid decryption of ei. (Again a linear Multi-Scalar Multiplication but in G2 this
time).

Trace(pk,m, σ, tk[i]): The Sub-Opener picks δ
$← Zp and outputs a blinded tuple (c1 = tk[i]δ, c2 =

σδ4,2, c3 = gδ2) and the target user i. Anyone can then check the validity of the tuple that should satisfy:

e(gyi1 , c3) = e(g1, c1) and e(σ4,1, c3) = e(g1, c2)

and then know the result of the trace process from the test e(σ0, c2c1) = e(g1, c3). We recall that gyi1

is included in Reg[i] and is thus considered public, and that each row in Reg is signed, so the group
manager authority acknowledged that.

Step(pk,m, σ, sk[i]): To step in or out, a user picks a random δ, and publishes a similar blinded tuple

(c1 = gδyi2 , c2 = σδ4,2, c3 = gδ2) and i. Anyone can then check the validity of this tuple as above:

e(gyi1 , c3) = e(g1, c1) and e(σ4,1, c3) = e(g1, c2)

and then if the step is in or out with: e(σ0, c2c1) ?= e(g1, c3).
Another way to step-in or out of a given signature, less efficient but which induces the knowledge of

yi: a user just does the same thing as a sub-opener, together with either an extra signature involving
his private key or a bit-per-bit proof of knowledge of yi. This adds an extra-property outside the scope
of our model, which proves that the step in/out has really been initiated by the user itself (and not a
tracing authority).

Security

We will rely on four assumptions, SXDH we already detailed for the indistinguishably of our commitments,
CDH+ we detailed when we presented our asymmetric variant of Waters for the unforgeability of the
signature, the asymmetrical q-DDHI assumption for the pseudo-randomness of the the Dodis-Yampolskiy
VRF, and the q-HHSDH for the certificate and so the non-frameability.

Correctness: Correctness of our scheme is guaranteed by the perfect soundness of the Groth-Sahai
proofs in the signature and in the output of procedures Open, Trace and Step.

Anonymity: We now study the anonymity property.

Theorem 3.2.1 If there exists an adversary A that can break the anonymity property of the scheme,
then there exists an adversary B that can break the ` − DDHI problem in G1 or the SXDH assumption,
where ` is the maximal number of signing queries for a user.
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Intuitively, we will show first that a perfectly binding instantiation can be supplanted by a perfectly
hiding one without consequence under SXDH, in this case only the ID can possibly link information, but
under DDHI it does not.

Proof: Let us assume that an adversary is able to break the anonymity property of our scheme. It
means that in the anonymity game, he has a non-negligible advantage ε > 0 to distinguish G(0) where
b = 0 from G(1) where b = 1. We start our sequence of games from G(0), denoted G0.

G1 The simulator B is given a challenge A = (g, gy, . . . , gy
`

) ∈ G`+1
1 and D = g1/y, for an unknown y. B

first chooses different random values z∗, z1, . . . , z`−1 ∈ Z`p, which completely define the polynomial

P =
∏`−1
i=1(X + zi), of degree `− 1. Granted the above challenge, B can compute g1 = gP (y), and

the rest of the public key is computed as in a normal scheme. In particular, one knows the master
secret key γ.

The future challenge user i0 will virtually have yi0 = sk[i0] = y− z∗. B can compute gyi0 = gy1/g
zt

1

(from the input A without using y, even if we know it here). The public certificate (in the Reg list)

for the challenge user is (g
xi0
1 , g

xi0
2 , gy1/g

zt

1 , (k1g
y
1/g

zt

1 )1/(γ+x)), plus some proofs and signatures. B
is also given Groth-Sahai commitment keys (extraction key is unknown, hence the classical notion
of anonymity and not full-anonymity). This Setup is indistinguishable from the real one since all
the keys are generated as in the real game. Because of the knowledge of the master secret key, B
easily answers any join queries, both active and passive. However he still has to guess i0, which is
correct with probability 1/n, where n is the total number of passive join queries. It can also answer
any corruption, that should not happen for the challenge user, even if we know y in this game.

As our simulator is able to know all xi and all yi for registered users (except the challenge one), he
will be able to answer signing queries as users would do. For the challenge user, on the j-th signing

query, he computes σ0 = g
1/(sk[i]+zj)
1 = g

∏
i6=j(y+zi), which can be done from the challenge input

A, the rest is done as in the real game using y and zj as ephemeral random. For the challenge
signing query, he does the same has above with the ephemeral value z∗, and the expected ID is

g
1/(sk[i]+z∗)
1 = gP (y)/y = gQ(y)g

∏
(zi)/y, where Q = (

∏`
i=1(X + zi) −

∏
(zi))/X is a polynomial of

degree `−1 and thus gQ(y) can be computed from the instance. He thus outputs σ0 = gQ(y) ·D
∏

(zi).
Since D = g1/y, the signature is similar to the above one, and so is indistinguishable from a real
signature.

G2 We then modify the game, and we initialize Groth-Sahai commitment keys in a perfectly hiding
setting leading to perfectly WI commitments and proofs. This game is indistinguishable from the
previous one under the SXDH.

G3 For the challenge user signing queries, we use random commitments for σ1, σ2, σ3. As we are in the
perfectly hiding setting, this is indistinguishable anyway.

G4 We do not know anymore y, that we did not use anyway, and thus this game is perfectly indistin-
guishable from the previous one.

G5 D is a random value, which is indistinguishable from the real one under the `−DDHI assumption as
we only have a polynomial number of zi in input like in the Dodis-Yampolskiy PRF: the challenge
signature does not depend anymore on the challenge user.

To complete the proof, we should make the same sequence again, starting from G0’ that is G(1), up
to G5’, that is perfectly indistinguishable from G5, hence the computational indistinguishability between
G0’ = G(1) and G0 = G(0). �

Soundness: Within the soundness analysis, we prove traceability and non-frameability.

Theorem 3.2.2 If there exists an adversary A against the soundness of the scheme, then we can build
an adversary B that can either break a computational problem (Q−HHSDH, Q′−HSDH, or CDH+), or a
decisional one (the 1-DDHI, or the SXDH), where Q is maximal number of users, and Q′ is the maximal
number of signing queries for a user.

Note that the 1-DDHI is equivalent to the Decisional Square Diffie-Hellman, since we have a sequence
(g1, g

γ
1 , g

δ
1) where one has to decide whether δ = 1/γ, which can be written (G = gγ1 , G

α = g1, G
β = gδ1),

where α = 1/γ, and β = δ/γ, and one has to decide whether δ = 1/γ, and thus whether β = α2.
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Proof: Non-frameability and misidentification are very closely related, we will treat both simultaneously,
there are three ways to cheat the soundness of our scheme: either by creating a new certificate (G1) which
induces a misidentification attack, or by using an existing certificate but on a new message (G2a,2b) which
breaks the non-frameability.

We study the security of the unencrypted version of our scheme (because of the perfect soundness of
the Groth-Sahai proofs in the perfectly binding setting, and extractability of the commitments). We will
construct three different games, in the first one (G1), we assume the adversary is able to forge a signature
by generating a new certificate (a new tuple (σ1, σ2, σ3)), in the second one (G2a) the adversary is able
to forge a new σ0 and so break the tracing or step procedure, in the last game (G2b) the adversary forges
a new Waters signature (a new tuple (σ4, σ5, σ6)).

G1 Let us be given a Q−HHSDH challenge (g1, k, g2,Ω), (gxi
1 , g

xi
2 , yi, Ai)i∈[[1,Q]]. We build an adversary

B able to solve this challenge, from A that breaks the soundness of our scheme by generating a new
tuple (σ1, σ2, σ3). B generates the commitment keys, so that he knows the trapdoor, and publishes
the group public key (g1, g2, k1,F ,Ω, C). To answer the i-th join queries, if this is an active join, B
extracts y′i and adapts his y′′i so that y′i + y′′i = yi, if it is a passive join, B directly chooses yi. As
he knows the extraction key, he can give the opening key skO to the adversary.

After at most Q join queries, A is able to output a new signature with a new certificate tuple with
non-negligible probability. As B knows the trapdoor of the commitment scheme, he can obtain
(gx1 , g

x
2 , g

y
1 , g

y
2 , A = (kgy1 )1/(γ+x)) and so he is able to answer the challenge Q− HHSDH instance.

G2a Let us be given a Q − HSDH challenge (g1, g2, g
y
2 ) and (gti1 , g

ti
2 , ID(y, ti) = g

1/(y+ti)
1 )i∈[[1,Q]]. We

build an adversary B answering this challenge, from an adversary A breaking the soundness of our
scheme by forging a new ID.

B generates a new γ, skO, he then gives msk = γ, skO to A, together with the public parameters
(g1, g2, k1,F , Ω = gγ2 , C). B can answer any joinP queries as he knows msk, the user on which
we expect the attack (the challenge user) will have a certificate corresponding to one with y as a
secret key. (Specifically tk[i] = gy2 ). A can corrupt any user, if he tries to corrupt the challenge
user, the simulation fails. As all uncorrupted user looks the same, with non-negligible probably the
simulation continues. Thanks to the challenge tuple, B can answer to at most Q signing queries
for challenge user (each time using a new ID).

After at most Q signing queries, A succeeds in breaking the non-frameability with non-negligible
probability by generating a new ID, on an uncorrupted user. As uncorrupted users are indistin-
guishable, with non negligible probability this user is the challenge one, and so B is able to produce

a new tuple (gt1, g
t
2, g

1/(t+y)
1 ), which breaks the Q− HSDH assumption.

G2b Let us be given an CDH+ challenge (in other words an asymmetric Waters public key) (pk = (gt1, g
t
2)

for the global parameters (g1, g2, k1,F). We build an algorithm B that breaks the unforgeability
of this signature, and thus the CDH+ problem, from an adversary A breaking the non-frameability
property of our scheme by reusing an existing ID with the corresponding certificate, but on a new
message.

G2b,1 In the first game, B knows the discrete logarithm value t, generates a new γ, skO, he then
gives msk = γ, skO to A, together with the public key (g1, g2, k1,Ω = gγ2 , C). B can answer
any joinP queries as he knows msk, and extract the secret keys from the extraction keys of
the commitment scheme, one of those uncorrupted user is expected to be our challenge user,
with secret key y, the one A has to frame.

B can answer any signing queries. On one of them for our challenge user, say on m, he will
use the above t as ephemeral Waters public key (for the z), and thus computes a σ0 = ID(y, t)
with the corresponding Groth-Sahai proof. This way A now possesses a valid signature on
m, with σ4 = (gt1, g

t
2), σ5 = kt1F(m)s, σ6 = (gs1, g

s
2). With non-negligible probably A breaks

the non-frameability of our scheme, by hypothesis A does it by reusing an existing σ0, . . . , σ4,
as uncorrupted users are indistinguishable, A frames our challenge user with non-negligible
probability, and as he makes a finite number of signing queries, he will use with non-negligible
probability σ4 = (gt1, g

t
2).

Therefore, with non-negligible probability A outputs a new valid signature on m′ with σ4 =
(gt1, g

t
2), this means we have (σ4, σ5, σ6) such that e(σ4,1, g2) = e(g1, σ4,2), e(σ6,1, g2) = e(g1, σ6,2),

and e(σ5, g2) = e(k1, σ4,2).e(F(m′), σ6,2), and so B can outputs a valid forgery on the Waters
challenge for the public key (gt1, g

t
2). But in this game, we know t.
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G2b,2 In a second game, we switch the Groth-Sahai setup into the perfectly hiding one, so that the
proofs can be simulated, more precisely without using t when proving the validity of σ0. This
is indistinguishable from the previous game under the SXDH assumption.

G2b,3 In a third game, we replace σ0 by a random value, still simulating the proofs. As explained
in the anonymity proof, a random ID is indistinguishable from the real one under the DDHI
problem. Furthermore, here there is only one element, hence the 1-DDHI assumption. In this
last game, one does not need to know t anymore, and thus the signature forgery reduces to
breaking the CDH+.

Now let A be an adversary against the soundness of our scheme with an advantage ε. If with
probability greater than ε/3, A breaks the misidentification property of the scheme, then we can run
the game G1, else if with probability greater than ε/3, A breaks the non-frameability property with a
new ID, then we can run the game G2a, else A breaks the non-frameability property with a new Waters
component and so we run the game G2b. So if there exists an adversary against the soundness of our
scheme, we can break with non-negligible probability one of the previous problems. �

3.3 List Signatures

List signatures were introduced by Canard et al. in [CSST06]. They let users sign anonymously, in an
irrevocable way, but grant linkability in a specific time-frame: no one can trace back the actual signer,
but if a user signs two messages within a specific time-frame, the signatures will be linkable. Since then,
it has been an open problem to know if there was any way to construct such a list signature scheme in
the standard model.

Our previous construction of traceable signature is a first milestone to the realization of such signature.
We simply need to adapt the previous identifier value, in such a way that on hand it will be the same
for two signatures from the same user in a given time period, while on the other hand it is unpredictable
between two different time periods.

3.3.1 Security Notions for List Signatures

In this section we briefly present the security notions involved in a list signature, we will see that most
of them are directly linked to security notions present in traceable signatures. We will once again use
similar notations as [BSZ05]. In a List Signature scheme, there are several users, which are all registered
in a PKI. We thus continue to assume that each user Ui owns a pair (usk[i], upk[i]) certified by the PKI.
In a standard implementation there is only one authority: The Group Manager: it issues certificates
for users to grant access to the group. (Technically, we can still add an Opener, it will work exactly as
before, however for the sake of clarity we will skip this part to lighten our construction.)

A List Signature scheme is thus defined by a sequence of (interactive) publicly verifiable protocols:

List Signature
p LS = (Setup, Join,Sign,Verif,Match):

• Setup(1K), where K is the security parameter. This algorithm generates the global parameters of
the system, the public key pk and the master secret key msk given to the group manager.

• Join(Ui): this is an interactive protocol between a user Ui (using his secret key usk[i]) and the
group manager (using his private key msk). At the end of the protocol, the user obtains a signing
key sk[i], and the group manager adds the user to the registration list, storing some information in
Reg[i].

• Sign(pk, i,m, t, sk[i]): this is a (possibly interactive) protocol expected to be made by a registered
user i, using his own key sk[i]. It produces a signature σ on the message m at the time-frame t .

• Verif(pk,m, t, σ): anybody should be able to verify the validity of the signature, with respect to
the public key pk. This algorithm thus outputs 1 if the signature is valid, and 0 otherwise.

• Match(pk,m1, t1,m2, t2, σ1, σ2): This outputs 1 iff t1 = t2 and σ1 and σ2 were produced by the
same user.

y
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(a) Experiment ExpufLS,A(K)
1. (pk,msk)← Setup(1K)
2. (t, (mi, σi)i∈[[1,n]])← A(pk,msk : joinP, corrupt, sign)
3. IF ∃iVerif(pk,mt, t, σt) = 0, RETURN 0
4. IF ∃i 6= j,Match(pk,mi, t,mj , t, σi, σj) = 1

RETURN 0
5. IF n > #CU + S(t), RETURN 1
6. ELSE RETURN 0

AdvufLS,A(k) = Pr[ExpufLS,A(K) = 1]

(b) Experiment Expanon−bLS,A (K)

1. (pk,msk)← Setup(1K)
2. (m, t, i0, i1)← A(FIND, pk : joinA, joinP, corrupt, sign)
4. σ ← Sign(pk, ib,m, t, {sk[ib]})
5. b′ ← A(GUESS, σ : joinA, joinP, corrupt, sign)
6. IF i0 ∈ CU OR i1 ∈ CU RETURN ⊥
7. IF (i0, ∗) ∈ S(t) OR (i1, ∗) ∈ S(t) RETURN ⊥
8. ELSE RETURN b′

AdvanonLS,A(K) = Pr[Expanon−1
LS,A (K) = 1]− Pr[Expanon−0

LS,A (K) = 1]

Figure 3.6: Security Notions for List Signatures

Security Notions

The correctness notion guarantees that honest users should be able to generate valid signatures.

In the following experiments that formalize the security notions, the adversary can run the Join
protocol,

• either through the joinP-oracle (passive join), which means that it creates an honest user for whom
it does not know the secret keys: the index i is added to the HU (Honest Users) list;

• or through the joinA-oracle (active join), which means that it interacts with the group manager to
create a user it will control: the index i is added to the CU (Corrupted Users) list.

After a user is created, the adversary can interact with honest users, granted some oracles, quite similar
to the previous ones:

• corrupt(i), if i ∈ HU, provides the specific secret key of this user. The adversary can now control it
during the whole simulation. Therefore i is added to CU;

• sign(pk, i,m, t), if i ∈ HU, plays as the honest user i would do in the signature process to generate a
signature on message m during the time-frame t. Then (i,m, t) is appended to the list S (generated
signatures). It should be noted that the time-frame is included, and S(t) returns the messages m
and user i on which the signing oracle was queried during a specific time-frame..

Soundness: This is the main security notion, see Figure 3.6, page 67 (a): An adversary can produce
at most one valid signature per time-frame per corrupted player. LS is Sound if for any polynomial
adversary A, the advantage AdvufLS,A(K) is negligible. This combine two properties, first the adversary
should not be able to make any user sign twice in the same time-frame without being detected, and then
he should not be able to generate a signature on a message m for an uncorrupted player i, except by
having queried the signing oracle on the very same user i and message m during the same time-frame.

Anonymity: We now address the privacy concerns, see Figure 3.6, page 67 (b). Given two honest users
i0 and i1, the adversary should not have any significant advantage in guessing which one of them has
issued a valid signature. LS is anonymous if, for any polynomial adversaryA, the advantage AdvanonLS,A(K) =

Pr[Expanon−1
LS,A (K) = 1]− Pr[Expanon−0

LS,A (K) = 1] is negligible.

3.3.2 List Signatures in the Standard Model

The protocol is quite similar to the previous one except for two things, z is no longer chosen at random,
but is simply a scalar corresponding to the time-frame t, for the sake of clarity we will t instead of z(t),
and we can no longer use kz1 as a private Waters key, z being public, so we will use a private hy1:

Setup(1K): The system generates a pairing-friendly environment (p,G1,G2,GT , e, g1, g2), generators for
a Waters function F in G1, a Groth-Sahai CRS denoted by C. One also chooses independent generators
(h1, k1) of G2

1. The group manager chooses a scalar γ
$← Zp for the master key msk = γ, and computes

Ω = gγ2 . The group public key is then pk = (g1, g2, h1, k1,F ,Ω, C).
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Join(Ui): In order to join the system, a user Ui, with a pair of keys (usk[i], upk[i]) in the PKI, in-
teracts with the group manager, similarly to the previous scheme, so that at the end, the user owns
a certificate {Ai,Xi = (gxi

1 , g
xi
2 ), gyi1 }, where xi is chosen by the group manager but yi is chosen

in common, but private to the user, while still extractable for our simulator in the proof. Then,
Reg[i] = {i, upk[i], Ai,Xi, g

yi
1 , ei, si}, whereas sk[i] = yi.

Sign(pk,m, t, sk[i]): When a user i wants to sign a message m during the time-frame t, he computes the

signature of m under his private key sk[i]: First, he will create his ephemeral ID(i, t) = g
1/(t+yi)
1 , and

computes
σ = (σ0 = ID(i, t), σ1 = Xi, σ2 = yi, σ3 = Ai, σ4 = gs1, g

s
2, σ5 = hyi1 F(m)s).

The relations could be verified by:

e(σ0, g
t
2g
σ2,2

2 ) = e(g1, g2) e(σ1,1, g2) = e(g1, σ1,2)

e(σ3,Ωσ1,2) = e(k1, g2) · e(g1, g
σ2,2

2 ) e(g
σ2,1

1 , g2) = e(g1, g
σ2,2

2 )

(σ5, g2) = e(h1, g
σ2,2

2 ) · e(F(m), σ4,2) e(g
σ4,1

1 , g2) = e(g1, g
σ4,2

2 )

In order to get anonymity, before publication, some of these tuples are thereafter committed, together
with the corresponding Groth-Sahai proofs, to prove the validity of the previous pairing equations

σi = (σ0, C(σ1), C(σ2), C(σ3), σ4, C(σ5))

yi has to be committed both in G1 and G2, hence the existence of both σ2,1 and σ2,2 in the previous
relations.

Match(pk,m, t,m′, t′, σ, σ′): This algorithm return 1 iff t = t′ and σ0 = σ′0.
It should be noted, that such signatures also allow an Opener (if he knows the commitments extrac-

tion key, and possibly tracing authorities, if the opener gives them the tracing key tk[i]: the plaintext
associated with ei)

Security

The security of this scheme can be proven in a similar way to the previous one. The main difference
between the two schemes comes from σ5 where we cannot use t but a the private value yi that appears in
some other equations, and so we need to commit it, together with a proof of validity under the committed
verification key σ2,2. This alters a little the security proof. However in both cases it is easier. In the
anonymity, σ5 becomes a random when we switch in the perfectly hiding setting, so we only need to
worry about it in G1, however we have gy1 , so we only need to define h1 = gµ1 for a random µ and we can

compute hy−t
∗

1 = (gy1/g
t∗
1 )

µ
. Afterwards it is exactly the same as before. And since the adversary can

only make a limited number of signature queries, he will only be able to work on a polynomial number
of time-frames t and so we can still use the Dodis-Yampolskiy VRF.

Theorem 3.3.1 If there exists an adversary A that can break the anonymity property of the scheme,
then there exists an adversary B that can break the ` − DDHI problem in G1 or the SXDH assumption,
where ` is the maximal number of signing queries for a user.

Intuitively, we will show first that a perfectly binding instantiation can be supplanted by a perfectly
hiding one without consequence under SXDH, in this case only the ID can possibly link information, but
under DDHI it does not.

Proof: Let us assume that an adversary is able to break the anonymity property of our scheme. It
means that in the anonymity game, he has a non-negligible advantage ε > 0 to distinguish G(0) where
b = 0 from G(1) where b = 1. We start our sequence of games from G(0), denoted G0.

G1 The simulator B is given a challenge A = (g, gy, . . . , gy
`

) ∈ G`+1
1 and D = g1/y, for an unknown y.

B first chooses different random values t∗, t1, . . . , t`−1 ∈ Z`p, which completely define the polynomial

P =
∏`−1
i=1(X + ti), of degree `− 1. Granted the above challenge, B can compute g1 = gP (y), and

the rest of the public key is computed like in the regular scheme. In particular, one knows the
master secret key γ.
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The future challenge user i0 will virtually have yi0 = sk[i0] = y − t∗. B can compute gyi0 = gy1/g
t∗

1

(from the input A without using y, even if we know it here). The public certificate (in the Reg list)
for the challenge user is (g

xi0
1 , g

xi0
2 , gy1/g

z∗

1 , (k1g
y
1/g

z∗

1 )1/(γ+x)), plus some proofs and signatures. B
is also given Groth-Sahai commitment keys (extraction key is unknown, hence the classical notion
of anonymity and not full-anonymity). This Setup is indistinguishable from the real one since all
the keys are generated as in the real game. He also defines h1 = gµ1 , so the private signing key for
the challenge user is sk = h

yi0
1 = (gy1/g

t∗

1 )µ. Because of the knowledge of the master secret key, B
easily answers any join queries, both active and passive. However B still has to guess i0, which is
correct with probability 1/n, where n is the total number of passive join queries. It can also answer
any corruption, that should not happen for the challenge user, even if we know y in this game.

The simulator B is able to know all xi and all yi for registered users (except the challenge one), he
will be able to answer signing queries as users would do. For the challenge user, on the j-th signing

query, he computes σ0 = g
1/(sk[i]+zj)
1 = g

∏
i6=j(y+ti), which can be done from the challenge input

A, the rest is done as in the real game using y and a sj as ephemeral random and the signing key
sk. For the challenge signing query, he does the same has above with the ephemeral value t∗, and

the expected ID is g
1/(sk[i]+t∗)
1 = gP (y)/y = gQ(y)g

∏
(ti)/y, where Q = (

∏`
i=1(X + ti) −

∏
(ti))/X

is a polynomial of degree ` − 1 and thus gQ(y) can be computed from the instance. He thus
outputs σ0 = gQ(y) ·D

∏
(ti). Since D = g1/y, the signature is similar to the above one, and so is

indistinguishable from a real signature.

G2 We then modify the game, and we initialize Groth-Sahai commitment keys which leads to perfectly
WI commitments and proofs. This game is indistinguishable from the previous one under the
SXDH.

G3 For the challenge user signing queries, we use random commitments for σ1, σ2, σ3, σ5. As we are in
the perfectly hiding setting, this is indistinguishable anyway.

G4 We do not know anymore y, that we did not use anyway, and thus this game is perfectly indistin-
guishable from the previous one.

G5 D is a random value, which is indistinguishable from the real one under the `−DDHI assumption as
we only have a polynomial number of ti in input like in the Dodis-Yampolskiy PRF: the challenge
signature does not depend anymore on the challenge user.

To complete the proof, we should make the same sequence again, starting from G0’ that is G(1), up
to G5’, that is perfectly indistinguishable from G5, hence the computational indistinguishability between
G0’ = G(1) and G0 = G(0). �

Soundness: Within the soundness analysis, we prove traceability and non-frameability.

Theorem 3.3.2 If there exists an adversary A against the soundness of the scheme, then we can build
an adversary B that can either break a computational problem (Q − HHSDH, Q′ − HSDH, or CDH+),
or a decisional one ( the 1-DDHI, or the SXDH), where Q is maximal number of users, and Q′ is the
maximal number of signing queries for a user.

The soundness property is easier to achieve than in the previous protocol, being able to sign twice
in the same time-frame implies to be able either to generate two different ID for the same t, and so to
work with two different yi, and so to have two certificates, either to sign another message with the same
user and to break the Waters unforgeability. And so the simulator will use the extraction key of Groth
and Sahai commitments in the perfectly binding setting to work to obtain the answer to the associated
challenges.

We just presented the first construction of List Signature in the standard model. However starting
from the same idea than our Traceable Signature, one is also able to create delegatable signatures. One
can see that our previous (vk = (gz1 , g

z
2), sk = hz1) can be seen as a Waters signature key, certified by

the user Ui who generated σ0, σ1, σ2, σ3. Anyone who possesses such pair of keys can sign in the name
of Ui. In fact they sign in the same of someone in the group who remain weakly-anonymous as long
as any opener / tracer is involved. The weakly is there, because two signatures generated by the same
delegated-signers are linkable. However while the adversary can link signatures generated by the same
delegated-signers this does not leak extra information about Ui.
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In this chapter we propose a new primitive we call Signature on Randomizable Ciphertexts: given a
signature on a ciphertext, anyone, knowing neither the signing key nor the encrypted message, can ran-
domize the ciphertext and adapt the signature to the fresh encryption. An Extractable Signature on Ran-
domizable Ciphertexts is the same, where knowing some decryption key dk, one can recover the plain sig-
nature on the original plaintext, such that SigExtSC(dk, vk,SignSC(sk, pk, (EncryptSC(pk, vk,m; r)); s)) =
SignS(sk, pk,m; s). Leading us to a somewhat commutative property between the signature and the
encryption.

We originally introduced this notion in [BFPV11], and here we propose an extended version where
we are able to handle more sophisticated ciphertexts (basically ciphertexts with two public parts, each
chosen by a participant). Those results let us achieve a round optimal blind signature under classical
assumptions in the standard model, and even a perfectly blind round optimal signature with partial
blindness under the same assumptions. We further define the notion of Multi-Blind Signatures, where
under our new result on Waters function programmability (cf 2.6.4, page 42) we are able to combine
several blind signatures into one. From now on, we drop any non standard hypotheses and solely prove
our security under DLin and CDH.

4.1 Definition, and Security Notions

This section presents the global framework and the security model for our new concept of signatures on
ciphertexts (or commitments).

We first define a scheme of signatures on ciphertexts. Note that, like stated earlier, this definition can
be adapted for commitments, when one uses a perfectly binding commitment scheme, which uniquely
defines the committed input.

Signatures on Ciphertexts
p SC=(Setup,KeyGenS ,KeyGenE ,Encrypt,Sign,Decrypt,Verif) is defined as follows:

70
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• Setup(1K), where K is the security parameter, generates the global parameters parame and params

for the associated encryption and signature schemes;

• KeyGenE(parame) generates a pair of keys, the encryption key pk and the associated decryption key
dk;

• KeyGenS(params) generates a pair of keys, the verification key vk and the signing key sk;

• Encrypt(pk, vk,m; r) produces a ciphertext c on input the message m ∈M and the encryption key
pk, using the random coins r ∈ Re. This ciphertext is intended to be later signed under the signing
key associated to the verification key vk (the field for vk can be empty if the signing algorithm is
universal and does not require a ciphertext specific to the signer);

• Sign(sk, pk, c; s), on input a ciphertext c and a signing key sk, using the random coins s ∈ Rs,
produces a signature σ, or ⊥ if the ciphertext c is not valid (w.r.t. pk, and possibly vk associated
to sk);

• Decrypt(dk, vk, c) decrypts the ciphertext c under the private key dk. It outputs the plaintext, or
⊥ if c is invalid (w.r.t. pk, and possibly vk);

• Verif(vk, pk, c, σ) checks whether σ is a valid signature on c, w.r.t. the public key vk. It outputs 1
if the signature is valid, and 0 otherwise (possibly because of an invalid ciphertext c, with respect
to pk, and possibly vk).

y

Classical security notions could still be applied to this signature scheme, but we want ciphertexts
and signatures to be efficiently malleable, as long as the plaintext is not affected. This will be useful for
probabilistic schemes, and even more for the randomizable scheme we will present below. In the classical
definition of existential unforgeability (EUF) [GMR88], a new signature on an already signed message
is not considered a valid forgery—as opposed to strong unforgeability (SUF). When signing ciphertexts,
EUF would consider a signature on a randomized ciphertext as a valid forgery. But if the ciphertext
is equivalent to an already signed ciphertext (i.e. it encrypts the same plaintext), this may not be
critical in some applications; in particular if we decrypt later anyway and a decrypted message-signature
pair is unforgeable. We thus define the most appropriate unforgeability (UF) notion for signatures on
ciphertexts:
SC is unforgeable if, for any polynomial-time adversaryA, the advantage SuccufSC,A(K) := Pr[ExpufSC,A(K) =

1] is negligible, with ExpufSC,A defined in Figure 4.1, page 71.

ExpufSC,A(K)
1. (parame, params)← Setup(1K); SM := ∅
2. {(pki, dki)} ← KeyGenE(parame); (vk, sk)← KeyGenS(params)
3. (pkj , c, σ)← Asign(sk,·,·)(params, parame, vk, {(pki, dki)});
4. m← Decrypt(dkj , vk, c)
5. IF m = ⊥ OR m ∈ SM OR Verif(vk, pkj , c, σ) = 0 RETURN 0
6. RETURN 1

Figure 4.1: Unforgeability of signatures on ciphertexts

Where sign(sk, ·, ·) is an oracle that takes as input a previously generated encryption key pki and a
ciphertext c, and generates a signature σ on it (if the ciphertext is valid). It also updates the set SM of
signed plaintexts with m = Decrypt(dki, vk, c), if the latter exists.

Unforgeability in the above sense thus states that no adversary is able to generate a new valid
ciphertext-signature pair for a ciphertext that encrypts a new message, i.e. different to those encrypted
in ciphertexts that were queried to the signing oracle.

Signatures on Randomizable Ciphertexts

Our primitive is based on an encryption scheme and a signature scheme. Since we want randomizability,
we use the previous definitions where both are enhanced by a randomization algorithm.

Randomizable Encryption Scheme
pLet (Setup,KeyGenE ,Encrypt,Decrypt) be an encryption scheme with the following additional algorithm:



72 Signatures on Randomizable Ciphertexts 4.1

• Random(pk, c; r′) produces a new ciphertext c′, equivalent to the input ciphertext c, under the
public key pk, using the additional random coins r′ ∈ Re.

An encryption scheme is called randomizable if for any param← Setup(1K), (pk, dk)← KeyGenE(param),
message m ∈M, coins r ∈ Re, and ciphertext c = Encrypt(pk,m; r), the following distributions are sta-

tistically indistinguishable: D0 = {r′ $← Re : Encrypt(pk,m; r′)} and D1 = {r′ $← Re : Random(pk, c; r′)}.
y

Randomizable Signature Scheme
p Let (Setup,KeyGenS ,Sign,Verif) be a signature scheme, with the following additional algorithm:

• Random(vk,M, σ; s′) produces a new signature σ′ valid under vk from σ on a message M , using the
additional random coins s′ ∈ Rs.

A signature scheme is called randomizable if for any param← Setup(1K),
(vk, sk)← KeyGenS(param), message M ∈ M, random s ∈ Rs, signature σ = Sign(sk,M ; s), the fol-

lowing distributions are statistically indistinguishable: D0 = {s′ $← Rs : Sign(sk,M ; s′)} and D1 = {s′ $←
Rs : Random(vk,M, σ; s′)}. y

The usual unforgeability notions apply (except strong unforgeability, since the signature is malleable, by
definition). We now extend the randomization to signatures on randomizable ciphertexts:

Randomizable Signature on Randomizable Ciphertexts
p Let (Setup,KeyGenS ,KeyGenE ,Encrypt,Sign,Decrypt,Verif) be a scheme of signatures on ciphertexts,
with the following additional algorithm:

• Random(vk, pk, c, σ; r′, s′) outputs a ciphertext c′ that encrypts the same message as c under the
public key pk, and a signature σ′ on c′. Further inputs are a signature σ on c under vk, and random
coins r′ ∈ Re and s′ ∈ Rs.

A signature on ciphertexts is called randomizable if for any global parameters (parame, params) ←
Setup(1K), keys (pk, dk) ← KeyGenE(parame) and (vk, sk) ← KeyGenS(params), m ∈ M, and random
coins r ∈ Re and s ∈ Rs, for c = Encrypt(pk, vk,m; r) and σ = Sign(sk, pk, c; s) the following distribu-
tions D0 are statistically indistinguishable:

D0 = {r′ $← Re; s′ $← Rs : (c′ = Encrypt(pk, vk,m; r′), σ′ = Sign(sk, pk, c′; s′))}

D1 = {r′ $← Re; s′ $← Rs : (c′, σ′) = Random(vk, pk, c, σ; r′, s′)}

y

We will denote by 1e and 1s the neutral elements inRe andRs that keep the ciphertexts and/or signatures
unchanged after randomization. If Re and Rs are groups (which will be the case for all our schemes, with
addition being the group operation) and if we show that it is possible to additively update the randomness
then this proves that the schemes are randomizable. The same unforgeability notion as above applies. If
an additional extraction algorithm exists for the signature, we get extractable signatures on ciphertexts
(defined below). Then, our above unforgeability notion for signatures on ciphertexts follows from the
standard unforgeability notion on signatures.

Extractable Signatures on Randomizable Ciphertexts

For a scheme of signatures on randomizable ciphertexts (SRC) SC, we define the following additional
algorithm:

• SigExtSC(dk, vk, σ), which is given a decryption key, a verification key and a signature, outputs a
signature σ′.

Let us assume that there is a signature scheme S where SetupS is the projection of SetupSC on the
signature component and KeyGenS = SKeyGen. The scheme SC is extractable if the following holds:
for any (parame, params) ← SetupSC(1

K), (pk, dk) ← EKeyGen(parame), (vk, sk) ← SKeyGen(params) =
KeyGenS(params),m ∈ M, random coins r ∈ Re, s ∈ Rs, for c = EncryptSC(pk, vk,m; r) and σ =
SignSC(sk, pk, c; s), the output σ′ = SigExtSC(dk, vk, σ) is a valid signature on m under vk, that is,
VerifS(vk,m, σ′) is true.
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An extractable SRC scheme SC allows the following: a user can encrypt a message m and obtain a
signature σ on the ciphertext c. From (c, σ) the owner of the decryption key can now not only recover
the encrypted message m, but also a signature σ′ on the message m, using the functionality SigExtSC .
The signature σ on the ciphertext c could thus be seen as an encryption of a signature on the message
m: for extractable signatures on ciphertexts, encryption and signing can thus be seen as commutative
(see Figure 4.2, page 73).
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A message M can be encrypted using

random coins r (EncryptSC).

The signer can sign this ciphertext (SignSC)

and anyone can randomize the pair

(RandomSC).

A signature on the plaintext can be ob-

tained using either dk (for SigExtSC) or the

coins r (if σ(C) has not been randomized);

the result is the same as a signature of M

by the signer (SignS).

Figure 4.2: (Strong) extractable signatures on randomizable ciphertexts

On this figure, one can easily see that SigExtSC ◦ SignSC ◦ Encrypt = SignS , granting therefore some
kind of commutativity between the signature and the encryption.

Strong Extractability

We can immediately apply the notion of extractable signatures on randomizable ciphertexts to build a
one-round classical blind signature scheme, but we can even consider more complex scenarios, such as
three-player blind signature schemes (see Section 4.3, page 79) with applications to e-cash systems.

As already sketched above, we may have an additional property: as for encryption, knowing the
random coins used for encryption may suffice to decrypt. After encrypting a message m as c, one knows
the random coins r used for the encryption. In all our instantiations we have that σ is the encryption
of σ′ with the same coins r used to encrypt the message. The user who encrypted m is thus able to
extract σ′, and not only the owner of the decryption key. A system (SC,S) with such a property will
be called a Strong Extractable (Randomizable) Signature on Ciphertexts (augmented by the dotted lines
in Figure 4.2, page 73). This property will be crucial in our scheme which achieves perfect blindness
in Section 4.4.1, page 82

4.2 Instantiations

4.2.1 A First Instantiation

Our first construction combines linear encryption [BBS04] and Waters signatures [Wat05] as follows:
given an encryption of the “Waters hash” F(M) of a message M (and some additional values), the
signer can make an encryption of a signature on M . Decrypting the latter leads thus to a classical
Waters signature on M , which will provide extractability.

Before presenting the final scheme in Section 4.2.2, page 76, we first combine naively linear encryption
and standard Waters signatures. We then modify the Waters signature to significantly improve efficiency
of the scheme. The constructions we give here all make use of a symmetric pairing and so result in a
prettier protocol ; as for our other schemes we also did an asymmetric construction more efficient which
is just a straightforward transposition.
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Waters Signature on Linear Ciphertexts

Using Waters signatures, we will sign a linear encryption of F = F(M). We note that from a “ciphertext”
using the decryption key, one can only extract F(M) (from which M can be obtained for small message
spaces). Signatures only remain unforgeable on F if in addition a proof ΠM of knowledge of M such that
F = F(M) is given. The keys are independent Waters signature keys (vk = Y = gy and sk = Z = hy),
and linear encryption keys (dk = (x1, x2), pk = (X1 = gx1 , X2 = gx2)). A first idea would be to define a
signature on an encrypted message c =

(
c1 = Xr1

1 , c2 = Xr2
2 , c3 = gr1+r2 · F(M)

)
as σ = (cs1, c

s
2, Z · cs3).

However, there are two problems:

• While the randomization of the signing coins s into s+ s′ is easy from c, the randomization of the
encryption coins r into r+r′ requires the knowledge of the values Xs

1 , X
s
2 and gs (see Section 4.2.2,

page 77 for how to randomize). We therefore include them in the signature.

• For the reduction of our notion of unforgeability to the security of Waters’ scheme, we need to
simulate the oracle returning signatures on ciphertexts having a Waters signature oracle. We can
first extract M from the proof of knowledge ΠM and submit M to our oracle. From a reply
(Z · F(M)s, g−s), we then have to generate σ = (cs1, c

s
2, Z · cs3;Xs

1 , X
s
2 , g

s) for an unknown s. We
could do so if we knew the randomness (r1, r2) for c1, c2 and c3; hence we add another proof to
the extended ciphertext: Πr proves knowledge of r1 and r2, used to encrypt F(M), which consists
of bit-by-bit commitments C1 = (C′(r1,1), . . . , C′(r1,`)) and C2 = (C′(r2,1), . . . , C′(r2,`)), where ` is
the bit-length of the order p, and proofs that each sub-commitment is indeed a bit commitment.

The global proof on the message and the randomness, which we denote by Π = (ΠM ,Πr), can be done
with randomizable commitments and proofs, using the Groth-Sahai methodology [GS08, FP09], and
consists of 9 k + 18 ` + 6 group elements (where k and ` are the respective bit lengths of messages and
of the order of G). Such an extended ciphertext (c,Π) can then be signed, after a test of validity of
the proof Π. Decryption and verification follow straight from the corresponding algorithms for Waters
signatures and linear encryption. More interestingly, the above signature on randomizable ciphertexts
is extractable: on a valid signature, if one knows the decryption key dk = (x1, x2), one can compute

Σ = (Σ1 = σ3/(σ
1/x1

1 σ
1/x2

2 ),Σ2 = σ−1
6 ), which is a valid signature on M :

Σ1 = σ3/(σ
1/x1

1 σ
1/x2

2 ) = Z · gs(r1+r2) · F(M)s/(gsr1gsr2) = Z · F(M)s

Σ2 = σ−1
6 = g−s

Note that without knowing the decryption key, the same can be obtained from the coins (r1, r2) used for
encryption: Σ = (Σ1 = σ3/σ

r1+r2
6 ,Σ2 = σ−1

6 ).
From the randomization formula of the basic schemes, we easily get the randomization property of the

above Waters signature on linear ciphertexts. One shows unforgeability in the UF sense under the CDH
assumption in G: extractability provides a forgery on a new message, but only known as F = F(M).
Since one also has to provide a valid proof ΠM that contains commitments to the bits of message M ,
the knowledge of the trapdoor (λ, µ) for the commitments allows to recover M too, which leads to an
existential attack of the basic Waters signature scheme.

Theorem 4.2.1 The Waters signature on linear ciphertexts is extractable when one defines

• SigExt(dk = (x1, x2), vk = X,σ): On a valid signature, if one knows the decryption key dk =

(x1, x2)), one can get back a signature on M (or F = F(M)): Σ = (Σ1 = σ3/(σ
1/x1

1 σ
1/x2

2 ),Σ2 =
σ−1

6 ). Note that one can also get the same value from the coins for encryption r1, r2: Σ = (Σ1 =
σ3/σ

r1+r2
6 ,Σ2 = σ−1

6 ).

Proof: The proof follows from the fact that

Σ1 = σ3/(σ
1/x1

1 σ
1/x2

2 ) = Y · cs3/(c
s/x1

1 c
s/x2

2 ) = Y · gs(r1+r2) · F(M)s/gsr1gsr2 = Y · F(M)s,

Σ2 = σ−1
6 = g−s.

�

Theorem 4.2.2 The Waters signature on linear ciphertexts is randomizable when one defines
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• Random(vk = X, pk = (X1, X2), (c = (c1, c2, c3),Π), σ = (σ1, σ2, σ3;σ4, σ5, σ6); r′1, r
′
2, s
′): In order

to randomize the signature and the ciphertext, the algorithm outputs:

c′ = (c1 ·X
r′1
1 , c2 ·X

r′2
2 , c3 · gr

′
1+r′2)

σ′ = (σ1 · cs
′

1 × σ
r′1
4 ·X

r′1s
′

1 , σ2 · cs
′

2 × σ
r′2
5 ·X

r′2s
′

2 , σ3 · cs
′

3 × σ
r′1+r′2
6 · g(r′1+r′2)s′ ;σ4 ·Xs′

1 , σ5 ·Xs′

2 , σ6 · gs
′
)

together with a randomization Π′ of Π.

Proof: On the input (vk = X, pk = (X1, X2), (c = (c1, c2, c3),Π), σ = (σ1, σ2, σ3;σ4, σ5, σ6); r′1, r
′
2, s
′),

where for some random scalars s, r1, r2 ∈ Zp,

c = (c1 = Xr1
1 , c2 = Xr2

2 , c3 = gr1+r2 · F(M))

σ = (cs1 = Xr1s
1 , cs2 = Xr2s

2 , Y · cs3 = Y · g(r1+r2)s · F(M)s;Xs
1 , X

s
2 , g

s)

the algorithm outputs (where R1 = r1 + r′1, R2 = r2 + r′2 and S = s+ s′):

c′ = (c1 ·X
r′1
1 = X

r1+r′1
1 , c2 ·X

r′2
2 = X

r2+r′2
2 , c3 · gr

′
1+r′2 = gr1+r′1+r2+r′2 · F(M))

= (XR1
1 , XR2

2 , gR1+R2 · F(M))

σ′ = (σ1 · cs
′

1 × σ
r′1
4 ·X

r′1s
′

1 , σ2 · cs
′

2 × σ
r′2
5 ·X

r′2s
′

2 , σ3 · cs
′

3 × σ
r′1+r′2
6 · g(r′1+r′2)s′ ;σ4 ·Xs′

1 , σ5 ·Xs′

2 , σ6 · gs
′
)

= (Xr1s
1 ·Xr1s

′

1 ×Xr′1s
1 ·Xr′1s

′

1 , Xr2s
2 ·Xr2s

′

2 ×Xr′2s
2 ·Xr′2s

′

2 ,

Y · F(M)s · g(r1+r2)s · F(M)s
′
· g(r1+r2)s′ × g(r′1+r′2)s · g(r′1+r′2)s′ ;Xs+s′

1 , Xs+s′

2 , gs+s
′
)

= (X
(r1+r′1)(s+s′)
1 , X

(r2+r′2)(s+s′)
2 , Y · F(M)s+s

′
· g(r1+r2+r′1+r′2)(s+s′);Xs+s′

1 , Xs+s′

2 , gs+s
′
)

= (XR1S
1 , XR2S

2 , Y · F(M)S · g(R1+R2)S ;XS
1 , X

S
2 , g

S) = (c′1
S
, c′2

S
, Y · c′3

S
;XS

1 , X
S
2 , g

S).

We thus have:

Random(vk, pk, c, σ; r′1, r
′
2, s
′) = Sign(sk, pk, c′; s+ s′), where c′ = Encrypt(pk, vk,M ; r1 + r′1, r2 + r′2).

�

Theorem 4.2.3 The Waters signature on linear ciphertexts is unforgeable (in the UF sense) under the
CDH assumption in G.

Proof: Let us denote SC our above signature on ciphertexts (but omit it in the subscripts for clarity),
and S the Waters signature scheme. We know that the latter is existentially unforgeable under the CDH
assumption. Let us assume that A is able to break the unforgeability of SC. We will build an adversary
B against that Waters signature scheme. We note that B generated the parameters for the commitments
for the proof Π of knowledge of M , r1 and r2, so that it can extract the values.

• Setup(1K): we first run the SetupS(1K) algorithm, from which we get paramS = (p,G,GT , e, g, h, ~u).
We set params = paramS = (p,G,GT , e, g, h, ~u), and parame = (p,G,GT , e, g). B sets the commit-
ment parameters so that it can extract committed values.

• KeyGenE(parame): for each new key request, B chooses two random scalars x1, x2
$← Zp, which

define the secret key dk = (x1, x2), and the public key as pk = (X1 = gx1 , X2 = gx2).

• KeyGenS(params): for the unique signing key request, one gets the verification key vkS from the
Waters EUF-CMA security game. B sets vk = vkS .

• A can now access a signing oracle, with queries of the form Sign(vk, pk, ·), for any pk and ciphertext
of its choice. But the ciphertext looks like c = (c1, c2, c3) together with Π = (ΠM ,Πr).

– If the tuple (c,Π) is not valid, then B returns ⊥;

– Otherwise, B can extract M from the proof of knowledge ΠM , that contains a bit-by-bit
extractable commitment CM of M . It then queries SignS(skS ,M) to the signing oracle, and
adds (vk,M) to the SM set. It receives back σ′ = (σ′1 = sk · F(M)s, σ′2 = g−s). B can also
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extract r1 and r2 from the bit-by-bit commitments C1 and C2 included in the proof Πr of
knowledge of r1 and r2. It then returns the signature σ defined as σ1 = σ′2

−r1x1 = gsr1x1 = Xsr1
1 , σ2 = σ′2

−r2x2 = Xsr2
2 ,

σ3 = σ′1σ
′
2
−r1−r2 = sk · F(M)s · gs(r1+r2), σ4 = σ′2

−x1 = gsx1 = Xs
1 ,

σ5 = σ′2
−x2 = gsx2 = Xs

2 , σ6 = σ′2
−1

= gs


• After a polynomial number of queries, A outputs, with non-negligible probability, a valid signature
σ on a valid ciphertext (c,Π). As above, one can extract the message M , and for a valid forgery,
one needs M 6= ⊥ and (M, vk) 6∈ SM. Using SigExt, as shown above, one thus gets a valid Waters

signature on M : σB = (σ3/(σ
1/x1

1 σ
1/x2

2 ) = sk · F(M)s, σ−1
6 = g−s). This breaks the EUF-CMA

property of the Waters signature scheme, that holds under the CDH assumption.

�

4.2.2 An Efficient Instantiation

The construction in the previous section is a concrete and feasible signature on randomizable ciphertexts,
which is furthermore extractable, and even in a strong way. We have thus achieved our goal, and all the
applications we had in mind can benefit from it. The main drawback, from an efficiency point of view,
are the bit-by-bit commitments CM , C1 and C2 of M, r1 and r2, respectively. Whereas the message M
to be signed could be short (and even a single bit for voting schemes), r1 and r2 are necessarily large (the
bit length of the order of the group). For a k-bit long message M , ΠM (composed of CM and a proof)
consists of 9 k+ 2 group elements. The random coins r1 and r2 being `-bit long, Πr (which includes C1,
C2 and the proof) requires 18 `+ 4 group elements. We now revisit the Waters signature scheme, which
will allow us to trade the costly bit-by-bit commitments C1 and C2, with two extra-parameters group
elements R1, R2.

The main idea for the construction is to build a scheme which is unforgeable against a stronger
kind of chosen-message attack under the same assumption: the adversary can submit “extended mes-
sages” (M,R1 = gr1 , R2 = gr2 , Y1 = Y r1 , Y2 = Y r2) and the oracle replies with the tuple (sk ·
(F(M)R1R2)s, g−s, R−s1 , R−s2 ). We name this attack chosen-extended-message attack and note that
this security notion implies the classical one, since querying (M, 1G, 1G, vk) yields a signature on M . In-
tuitively, the extra parameters (R1, R2) will allow simulation of the signature on the ciphertext without
having to know the random coins r1 and r2 explicitly.

Revisited Waters Signature

Our variant is defined by the four algorithms.

• Setup(1K): The scheme is defined over a bilinear group (p,G,GT , e, g), where e : G × G → GT is
an admissible bilinear map, G and GT are groups of prime order p, generated by g and e(g, g)
respectively.

We will sign messages M = (M1, . . . ,Mk) ∈ {0, 1}k. The parameters are a randomly chosen

generator h
$← G and a vector ~u = (u0, . . . , uk)

$← Gk+1 where k is a polynomial in K, which

defines the Waters Hash as F(M) = u0

∏k
i=1 u

Mi
i . We set param = (p,G,GT , e, g, h, ~u).

• KeyGenS(param): Choose a random scalar y
$← Zp, which defines the public key vk = Y = gy, and

the secret key as sk = Z = hy.

• Sign(sk = Z,M,R1, R2, Y1, Y2; s): First check the consistency of (R1, R2, Y1, Y2): e(R1, Y ) ?=
e(g, Y1), e(R2, Y ) ?= e(g, Y2) then this guarantees that there exists (r1, r2) such that Ri = gri , Yi =

Y ri . Choose a random s
$← Zp and define the signature as σ =

(
σ1 = Z · (F(M)R1R2)s, σ2 =

g−s, σ3 = R−s1 , σ4 = R−s2

)
. Again, we may replace the input message M by the pair (F(M),ΠM ).

• Verif(vk = Y,M,R1, R2, Y1, Y2, σ): Check whether e(g, σ1) · e(F(M)R1R2, σ2) ?= e(Y, h), e(g, σ3) ?=
e(σ2, R1), and e(g, σ4) ?= e(σ2, R2), as well as the consistency of (R1, R2, Y1, Y2).

To randomize a signature, we define: Random(vk, (F,ΠM ), R1, R2, Y1, Y2, σ = (σ1, σ2, σ3, σ4); s′) to out-

put σ′ = (σ1 · (FR1R2)s
′
, σ2 · g−s

′
, σ3 · R−s

′

1 , σ4 · R−s
′

2 ), for a random s′
$← Zp. This simply changes

the initial randomness s to s + s′ mod p. Hence, if s′ is uniform then the internal randomness of σ′ is
uniform in Zp.
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Theorem 4.2.4 Our variant of the Waters signature scheme is randomizable, and existentially unforge-
able under chosen-extended-message attacks if the CDH assumption holds.

The proof of unforgeability is similar to that for the original Waters scheme:

Proof: Let A be an adversary breaking the existential unforgeability of the above signature scheme,
i.e. after at most qs signing queries, it succeeds in building a new signature with probability ε. Let
(g,A = ga, B = gb) be a CDH-instance. We show how an adversary B can compute gab thanks to A.

SetupS : Pick a random position j
$← {0, . . . , k}, choose random indices y0, y1, . . . , yk

$← {0, . . . , 2qs−1},
and random scalars z0, z1, . . . , zk

$← Zp. One defines Y = A = ga, h = B = gb, u0 = hy0−2jqsgz0 ,
ui = hyigzi .

Signing queries: To answer a signing query on a message M = (Mi), we define

H = −2jqs + y0 +
∑
i

yiMi, J = z0 +
∑
i

ziMi : F(M) = hHgJ .

If H ≡ 0 (mod p) then the simulator aborts, otherwise he sets:

σ = (Y −J/H(Y1Y2)−1/H(F(M)R1R2)s, Y 1/Hg−s, Y
1/H
1 R−s1 , Y

1/H
2 R−s2 ).

Defining µ̃ = s− a/H, we have:

σ =
(
Y −J/H(Y1Y2)−1/H(hHgJR1R2)s, Y 1/Hg−s, Y

1/H
1 R−s1 , Y

1/H
2 R−s2

)
=
(
Y −J/HY −(r1+r2)/H(hagJa/Hg(r1+r2)a/H)(F(M)R1R2)µ̃, Y 1/Hg−a/Hg−µ̃, Y

1/H
1 R−s1 , Y

1/H
2 R−s2

)
=
(
ha(F(M)R1R2)µ̃, g−µ̃, R−µ̃1 , R−µ̃2

)
.

After at most qs signing queries A outputs a forgery σ∗ = (σ∗1 , σ
∗
2 , σ
∗
3 , σ
∗
4) on M∗. As before, we define

H∗ = −2jqs + y0 +
∑
i

yiM
∗
i , J∗ = z0 +

∑
i

ziM
∗
i : F(M∗) = hH

∗
gJ
∗
.

If H∗ 6≡ 0 (mod p) then abort, otherwise, for some µ∗, σ∗ = (ha(F(M∗)R1R2)µ
∗
, g−µ

∗
, R−µ

∗

1 , R−µ
∗

2 ),

and thus σ∗ = (hagJ
∗µ∗(R1R2)µ

∗
, g−µ

∗
, R−µ

∗

1 , R−µ
∗

2 ). As a consequence, σ∗1(σ∗2)J
∗
σ3σ4 = ha = gab: one

has solved the CDH problem.

Success Probability: The Waters hash function is (1, q)-programmable , therefore the previous sim-
ulation succeeds with non negligible probability (Θ(ε/qs

√
k)), and so B is an efficient adversary against

CDH. �

Signatures on Encrypted Messages

In our new scheme, we will sign a linear encryption of F = F(M) using our Revisited Waters signatures:

• Setup(1K): The scheme is based on a bilinear group (p,G,GT , e, g), which constitutes the parame-

ters parame for encryption. For the signing part, we require moreover a vector ~u = (u0, . . . , uk)
$←

Gk+1, and a generator h
$← G and define params = (p,G,GT , e, g, h, ~u).

• KeyGenE(parame): Choose two random scalars x1, x2
$← Zp, which define the secret key dk =

(x1, x2), and the public key as pk = (X1 = gx1 , X2 = gx2).

• KeyGenS(params): Choose a random scalar y
$← Zp, which defines the public key as vk = Y = gy,

and the secret key as sk = Z = hy.

• Encrypt
(
pk = (X1, X2), vk = Y,M ; (r1, r2)

)
: For a message M ∈ {0, 1}k and random scalars

r1, r2 ∈ Zp, define the ciphertext as c =
(
c1 = Xr1

1 , c2 = Xr2
2 , c3 = gr1+r2 · F(M)

)
. To guarantee

our notion of unforgeability of signatures on ciphertexts, we add proofs of knowledge of M and an
image of r1 and r2:
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– Proof Πr contains the commitments Cr = (C1 = C(Y r1), C2 = C(Y r2)), from which the
simulator can extract Y1, Y2 in the reduction (see below). Πr moreover contains proofs of
consistency: e(Ci, Xi) = e(ci, Y ). These equations are linear pairing product equations. We
require 6 group elements for the commitments and 6 for the proofs, thus 12 group elements
instead of 18 `+ 4 in the previous construction.

– Proof ΠM proves knowledge of M s.t. F(M) is encrypted in c. It consists of a bit-by-bit
commitment CM = (C′(M1), . . . , C′(Mk)) and proofs that each committed value is a bit (6 k

group elements); moreover, a proof that c3 is well-formed: e(c3, Y ) = e(u0

∏
i∈{1,...,k} u

Mi

i ), Y )·
e(C1C2, g), which is a linear pairing product equation (3 additional group elements). ΠM is
therefore composed of 9 k + 3 group elements.

The global proof (containing the commitments) Π consists therefore of 9 k + 15 group elements
(instead of 9 k+ 18 `+ 6 when using the original Waters scheme), where k and ` are the bit lengths
of the message M and elements of G, respectively.

• Sign
(
sk = Z, pk = (X1, X2), (c = (c1, c2, c3),Π); s

)
: To sign a ciphertext c = (c1, c2, c3), first check

if Π is valid, and if so, output

σ = (cs1, c
s
2, Z · cs3; Xs

1 , X
s
2 , g

s) .

• Decrypt
(
dk = (x1, x2), vk = Y, (c = (c1, c2, c3),Π)

)
: On a valid ciphertext (verifiable via Π), know-

ing the decryption key dk = (x1, x2), one can obtain F = F(M) since F = c3/(c
1/x1

1 c
1/x2

2 ).

• Verif
(
vk = Y, pk = (X1, X2), (c = (c1, c2, c3),Π), σ = (σ1, σ2, σ3;σ4, σ5, σ6)

)
: In order to verify

the signature, one verifies Π and checks whether the following pairing equations hold: e(σ3, g) =
e(h, Y ) · e(c3, σ6) and

e(σ1, X1) = e(c1, σ4) e(σ2, X2) = e(c2, σ5)

e(σ1, g) = e(c1, σ6) e(σ2, g) = e(c2, σ6)

• Random
(
vk = Y, pk = (X1, X2), (c = (c1, c2, c3),Π), σ; r′1, r

′
2, s
′): In order to randomize the signa-

ture and the ciphertext, the algorithm outputs:

c′ =
(
c1 ·X

r′1
1 , c2 ·X

r′2
2 , c3 · gr

′
1+r′2

)
σ′ =

(
σ1 · cs

′

1 · σ
r′1
4 ·X

r′1s
′

1 , σ2 · cs
′

2 · σ
r′2
5 ·X

r′2s
′

2 , σ3 · cs
′

3 · σ
r′1+r′2
6 · g(r′1+r′2)s′ ,

σ4 ·Xs′

1 , σ5 ·Xs′

2 , σ6 · gs
′

)
together with a randomization Π′ of Π.

• SigExt
(
dk = (x1, x2), vk, (c = (c1, c2, c3),Π), σ

)
: Return the following signature:

Σ =
(
Σ1 = σ3/(σ

1/x1

1 σ
1/x2

2 ),Σ2 = σ−1
6

)
, which is a valid signature on M :

Σ1 = σ3/(σ
1/x1

1 σ
1/x2

2 ) = Z · gs(r1+r2) · F(M)s/gsr1gsr2 = Z · F(M)s,

Σ2 = σ−1
6 = g−s.

The same can be obtained from the coins (r1, r2) used for encryption.

Theorem 4.2.5 The above scheme is randomizable and unforgeable (in the UF sense) under the CDH
assumption in G.

Correctness of Random follows from inspection of the construction of c′ and σ′ and the fact that
Groth-Sahai proofs are randomizable.

Since we have proved that our variant of Waters signatures is secure under a stronger kind of attack,
we can use it for an appropriate simulation of the signing oracle.

Proof: Let us denote SC our above signature on ciphertexts (but omit it in the subscripts for clarity),
and S our variant of Waters signature scheme. We know that the latter is existentially unforgeable
against chosen-extended-message attacks under the CDH assumption. Let us assume that A is able to
break the unforgeability of SC. We will build an adversary B against our variant of Waters signature
scheme. We note that B generated the parameters for the commitments for the proof Π of knowledge of
M , gr1 and gr2 , so that it can extract the values.
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• Setup(1K): we first run the SetupS(1K) algorithm, from which we get paramS = (p,G,GT , e, g, h, ~u).
We set params = paramS = (p,G,GT , e, g, h, ~u), and parame = (p,G,GT , e, g). B sets the commit-
ment parameters so that it can extract committed values.

• KeyGenE(parame): for each new key request, B chooses two random scalars x1, x2
$← Zp, which

define the secret key dk = (x1, x2), and the public key as pk = (X1 = gx1 , X2 = gx2).

• KeyGenS(params): for the unique signing key request, one gets the verification key vkS from our
variant of the Waters unforgeability security game. B sets vk = X = vkS .

• A can now access a signing oracle, with queries of the form Sign(vk, pk, ·), for any pk and ciphertext
of its choice. But the ciphertext looks like c = (c1, c2, c3) together with Π, that contains CM (with
extractable M), Cr = (C1, C2, C3) (with extractable gr1 , gr2 and Xr1+r2).

– If the tuple (c,Π) is not valid, then B returns ⊥;

– Otherwise, B can extract M from the bit-by-bit proof of knowledge ΠM , as well as Y1 = Xr1 ,
Y2 = Xr2 from Cr and using dk, R1 = cx1

1 , R2 = cx2
2 . It then queries SignS(skS ,M,R1, R2, Y1, Y2)

to the extended-message signing oracle, and adds (vk,M) to the SM set. It receives back
σ′ = (σ′1 = sk · (F(M)R1R2)s, σ′2 = g−s, σ′3 = R−s1 , σ′4 = R−s2 ).

It then returns

σ =

(
σ1 = σ′3

−x1 = gsr1x1 = Xsr1
1 , σ2 = σ′4

−x2 = gsr2x2 = Xsr2
2 , σ3 = σ′1 = sk · F(M)s · gs(r1+r2),

σ4 = σ′2
−x1 = gsx1 = Xs

1 , σ5 = σ′2
−x2 = gsx2 = Xs

2 , σ6 = σ′2
−1

= gs

)
• After a polynomial number of queries, A outputs, with non-negligible probability, a valid signature
σ on a valid ciphertext (c,Π). As above, from Π and the extraction key, B can extract the message
M . For a valid forgery, one needs M 6= ⊥ and (M, vk) 6∈ SM. Again, from Π, the extraction key
and the commitment key, B can obtain (R1, R2, Y1, Y2). One sets

σB = (Σ1 = sk(F(M)R1R2)s, Σ2 = σ−1
6 = g−s, Σ3 = σ

1/x1

1 = Rs1, Σ4 = σ
1/x2

2 = Rs2).

And so (M,R1, R2, Y1, Y2, σB) is a valid forgery. This breaks the security of our variant of the
Waters signature scheme, that holds under the CDH assumption.

�

The following table details the size of a ciphertext-signature pair, where the parameter k denotes the
bit length of a message:

Symmetric Pairing G
Waters + Linear 9 k + 24

Asymmetric Pairing G1 G2

Waters + ElGamal 6 k + 7 6 k + 5

4.3 First Applications

So, we have just introduced a basic version of our extractable signatures on randomizable ciphertexts, a
new primitive that has many applications to anonymity. The first straightforward application is to blind
signatures, which yields a similar (yet more efficient) result to [MSF10, GK08]; however, this does not
exploit all the power of our new tool. A more interesting application is to receipt-free voting schemes.
We discuss this in the following and then show how to construct variants of blind signatures from our
primitive.

4.3.1 Non-interactive Receipt-Free E-voting

In voting schemes, anonymity is a crucial property: nobody should be able to learn the content of my
vote. This can be achieved with homomorphic encryption schemes. Basically each user will compute
his vote vi and then commit it into ci, and then, through the homomorphic property of the encryption
scheme the voting center will compute f(c1, . . . , cn) and then open it to solely obtain the global result
of the election.

However, this does not address the problem of vote sellers: a voter may sell his vote and then
reveal/prove the content of his encrypted vote to the buyer. He could do so by simply revealing the
randomness used when encrypting the vote, which allows to verify that a claimed message was encrypted.
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A classical approach to prevent vote selling uses heavy interactive techniques based on randomizable
encryption schemes and designated-verifier zero-knowledge proofs: the voter encrypts his vote v as c
and additionally signs it to bar any modification by the voting center. But before doing so, the voting
center randomizes c into c′ (which cannot be opened by the voter anymore since he no longer knows
the random coins) and then proves that c and c′ contain the same plaintext. This proof must be non-
transferable, otherwise the voter could open c (by revealing the random coins) and transfer the proof to
the buyer, which together yields a proof of opening for c′. The used proof is thus a designated-verifier
zero-knowledge proof. Finally, after receiving c′ and being convinced by the proof, the voter signs c′.

Our randomizable signatures on ciphertexts allow to avoid interactions altogether: all a voter does is
encrypt his vote v as c and make a signature σ on c. The voting center can now consistently randomize
both c and σ as c′ and σ′, so that the randomness used in c′ is unknown to the signer, who is however
guaranteed that the vote was not modified by the voting center because of the unforgeability notion for
ESRC: nobody can generate a signature on a ciphertext that contains a different plaintext. We have
thus constructed a non-interactive receipt-free voting scheme.

Since our ESRC candidates use not only randomizable but homomorphic encryption schemes (the
encryption of the vote is actually the bit-commitments of the Mi’s, which are either linear encryptions
or ElGamal encryptions of gMi), classical techniques for voting schemes with homomorphic encryption
and threshold decryption can be used [BFP+01]: there is no risk for the signature on the ciphertext to
be converted into a signature on the plaintext if the board of authorities uses the decryption capability
on the encrypted tally only.

If the vote consists of one box to be checked, the size of the ballot is only 33 group elements in
the instantiation with linear encryption, and even smaller for the instantiation using ElGamal: 13 G1

elements and 11 G2 elements. Furthermore, if the vote consists of several (say k) boxes to be checked or
not, with various constraints, the ballot size grows only slowly in k, since while the votes are committed
bit by bit, the proofs can be global. Hence, the size basically corresponds to the signature on a ciphertext
of a k-bit message. The extended ciphertexts already contains proofs that plaintexts are bits only, and
all the proofs are randomizable.

4.3.2 Blind Signatures and Variants

Since the beginning of e-cash, blind signatures have been their most important tool. They provide an
interactive protocol between a bank and a user, letting a user have a message signed by the bank without
revealing it. Moreover, the message-signature pair obtained by the user is uncorrelated to the view of
the protocol execution by the bank, which enables the user to withdraw anonymous coins. Several
signature schemes have been turned into blind signature schemes. The best-known is the first scheme by
Chaum [Cha83], which is derived from RSA signatures [RSA78], and has been proven secure [BNPS01]
under the one-more RSA assumption in the random-oracle model [BR93]. As defined in [PS96, PS00],
for e-cash, the security requirement is the resistance to one-more forgeries: after interacting q times with
the signer, an adversary should not be able to output more than q valid signed messages.

With Extractable Signatures on Randomizable Ciphertexts, one can build a computationally blind
signature scheme: the user encrypts the message m into the ciphertext c under his own key, and asks
for a signature on c. He gets back a signature on the ciphertext c from which he can then extract σ, a
valid signature on m. This signature is not yet blind, since the signer knows the coins used to compute
it, and can thus link σ to the transcript. However, due to the randomizability of the signature, the user
can randomize σ into σ′ that is a secure blind signature:

• the blindness property relies on the semantic security of the encryption scheme (here DLin) and
the randomization, which is information-theoretic;

• the one-more unforgeability relies on unforgeability of the signature scheme (here CDH), since the
user cannot generate a signature for a message that has not been asked, encrypted, to the signer.
Of course, we do not obtain strong one-more unforgeability (where several signatures on the same
message would be counted several times), which is impossible with randomizable signatures.

This construction is similar to [GK08] but with better efficiency and much less bandwidth consumption
since the latter relies on inefficient NIZK techniques [DFN06].
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One-Round Fair Blind Signatures

With a strong extractable randomizable signature on ciphertexts, we get more than just standard blind
signatures: we have fair blind signatures [SPC95]. Using a strong Extractable Signature on Randomiz-
able Ciphertext scheme, the user does not need to encrypt m under his own key, since the random coins
suffice to extract the signature. He can thus encrypt the message m under a tracing authority’s key.
Using the decryption key, the authority can extract the message from c (or at least check if c encrypts
a purported message) w.r.t. the signed message and thus revoke anonymity in case of abuse.
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One-Round Three-Party Blind Signatures

Our primitive also allows to design a three-party blind signature scheme, which we define as follows:
a party A makes a signer C sign a message m for B so that neither A nor C can later link the final
message-signature pair (for A among all the signatures for the message m, and for C among all the valid
message-signature pairs). To realize this primitive, the party A encrypts the message m under the key of
B, and sends it to the signer C, who signs the ciphertext and applies the randomization algorithm to the
ciphertext-signature pair (this is useful only in case A and B are distinct, as then A does not know the
randomness for encryption and therefore cannot extract a signature). C sends the encrypted signature
to B (possibly via A, who cannot decrypt anyway) and B also applies the randomization algorithm (so
that C does not know the random coins used for signing) and then extracts the signature. With such a
2-flow scheme, B can obtain a signature, unknown to A, on a message chosen by A, unknown and even
indistinguishable from any message-signature pair to C. Applied to group signatures, such a primitive
allows a group manager A to add a new member B without learning his certificate provided by the
authority C: A can define the rights in the message, but only B receives the certificate generated by C.
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Additional Properties

Using our instantiation of Extractable Signature on Randomizable Ciphertext, we can define an additional
trapdoor: the extraction key for the commitments. It is not intended to be known by anybody (except
the simulator in the security analysis), since the commitment key is in the CRS, but one could consider
a scenario where it is given to a trusted authority that gets revocation capabilities.

Our construction is similar to previous efficient round-optimal blind signatures [Fuc09, AFG+10] in
that it uses Groth-Sahai proofs. However, we rely on standard assumptions only, and our resulting blind
signature is a standard Waters signature, which is much shorter (only 2 group elements) than the proof
of knowledge of a signature used in all previous constructions.

4.4 To Further Applications of Signatures on Randomizable Ciphertexts

In the previous applications one can see some room for several improvements. First the extraction
key is not always required : as long as the signer does not randomize the commitment (i.e. in case
of Strong Extractability) the committer is able to recover the signature by using his random. A first
step is then to switch to a perfectly hiding setting, where such manipulation can still be done, while
we remove the extraction key, guaranteeing therefore the impossibility to recover the signature for a
powerful eavesdropper.

In our previous applications, the message signed was only chosen by the committer. While it may
seem to be a good idea ; in many applications, the signer wants to be able to limit the type of message
he can sign. A bank will probably want to impose some date of validity, a poll center may want to
say something specific about the election, . . .. This kind of loophole in standard blind signatures was
detailed by Abe and Okamoto [AO00]: the signer has no control over the signed messages (except in
some sense the unforgeability which limits their number), and reinforced the proposition for Partially-
Blind Signatures made by Abe and Fujisaki [AF96]. We decided to supersede the ciphertext by a tuple
composed of the ciphertext itself, a public message chosen by the committer and a public message chosen,
possibly on the fly, by the signer. We call our version Signer-Friendly Blind Signature, because instead
of having a previous communication where they have to agree on the public part, here the signer can
add his own part during the process.

We will combine those two ideas in the next section 4.4.1, page 82.
Discarding the perfect blindness, we will then take advantage of this asynchronous property (the

user and the signer can independently choose their inputs) and we will consider the new context where
the message to be signed comes from several independent sources that cannot communicate together in
section 4.4.2, page 87.

4.4.1 To Perfectly Blind Signature with Partial Blindness

Definition, and security properties

This section presents the global framework and the security model for partially-blind signature schemes,
we will focus on stressing the differences with classical blind signatures.

Blind signatures introduced a nice feature, however in some circumstances it may be undesirable
that requesters can ask the signer to blindly sign any message. For example, in an e-cash scheme, some
expiration date information should be embedded in the e-coin, so the bank won’t have to store an ever-
growing number of coins information for double-spending checking, or a server will want to certify a vote
for a specific election only. Partially-blind signatures are thus a natural extension of blind signatures:
instead of signing an unknown message, the signer signs a message which contains a shared piece of
information in addition to the hidden part. This piece is called info and, in the standard definition, is
expected to have been defined before the execution of the protocol.

Partially-Blind Signature Scheme
p PBS = (SetupPBS ,KeyGenPBS , 〈S,U〉,VerifPBS) where

• SetupPBS(1K) generates the global parameters parampbs of the system;

• KeyGenPBS(parampbs) generates a pair of keys (pkPBS , skPBS);

• Signature Issuing is an interactive protocol between the algorithms S(skPBS , info) and U(pkPBS ,m, info),
for a message m ∈ {0, 1}n and shared information info. It generates an output σ for the user:
σ ← 〈S(skPBS , info),U(pkPBS ,m, info)〉.
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• VerifPBS(pkPBS ,m, info, σ) outputs 1 if the signature σ is valid with respect to the message m‖info
and pkPBS , 0 otherwise.

y

Quick note on security: The security requirements are a direct extension of the classical ones: for
unforgeability, we consider m‖info instead of m, and for the blindness, we condition the unlinkability
between signatures with the same public part info.

We consider the same public part, in the unlinkability property because otherwise anyone can dis-
tinguish which message was signed simply by comparing the public information. The unforgeability is
strengthened by considering also the public information so that the signer can be sure that the user
won’t be able to exploit his signature in another context.

Signer-Friendly Partially-Blind Signature Scheme
p (SetupPBS ,KeyGenPBS , 〈S,U〉,VerifPBS) where

• Setup(1K) generates the global parameters parampbs of the system;

• KeyGen(parampbs) generates a pair of keys (pkPBS , skPBS);

• Signature Issuing: this is an interactive protocol between the algorithms S(skPBS , info, infos) and
U(pkPBS ,m, info), for a message m ∈ {0, 1}n, public information info, additional public information
infos. It generates an output σ for the user: σ ← 〈S(skPBS , info, infos),U(pkPBS ,m, info)〉.

• Verif(pkPBS ,m, info, infos, σ) outputs 1 if the signature σ is valid with respect to the message
m‖info‖infos and pkPBS , 0 otherwise.

y

One can note that with infos = ∅, we have a standard partially-blind signature; whereas the case
info = infos = ∅ is the standard blind signature.

In previous existing partially-blind signature protocols, the participants had to pre-agreed on the
public information, in order to be able to run the protocol. Through this definition, it is no longer
mandatory and so we handle more cases, but of course they can still do that, and anyway, both the
signer and the user can stop the process if the public information is not like the one pre-agreed.

The signer always has the last word in the process, and so if he does not want to sign a specific info,
he will simply abort the protocol several times until the shared part suits his will. So, in the following, we
decided that it was wiser to let him choose this input. If the user wants a specific word in the final message
he can always add it to the blinded message. Intuitively this strengthens the unforgeability notion as
the adversary (the user in this case) won’t be able to choose the whole message to be signed because
of infos. This is ensured in the security game, because the adversary should outputs valid signatures,
therefore they should be done with the chosen infos. For the blindness property, the adversary should
guess on signatures with the same public info‖infos component, if it is not the case we answer with a
blind-signature ⊥. This requirement is crucial, because if the public components are not the same in the
two challenges then there is a trivial attack distinguishing the signatures thanks to those parts.

ExpblbPBS,S∗(K)

1. (pkBS ,m0,m1, stFIND, info, infos)← S∗(FIND, 1K);
2. b← {0, 1};
3. stISSUE ← S∗〈·,U(pkBS ,mb)〉1,〈·,U(pkBS ,m1−b,info,infos)〉1(ISSUE, stFIND);
4. IF σ0 = ⊥ OR σ1 = ⊥, (σ0, σ1)← (⊥,⊥);
5. b∗ ← S∗(GUESS, σ0, σ1, stISSUE);
5. IF b = b∗RETURN 1 ELSE RETURN 0.

Figure 4.3: Blindness for User-Friendly Partially Blind signatures

PBS is blind if, for any polynomial adversary S∗ (malicious signer), the advantage SuccblbPBS,S∗(K)

is negligible, where SuccblPBS,S∗(K) = |Pr[ExpblPBS,S∗(K) = 1] − 1/2|, in the security game presented in
Figure 4.3. If S∗ refuses to sign one of the input (i.e. σi = ⊥), then the two resulting signatures are
set to ⊥, therefore he cannot have any advantage if he decides to prevent the normal game execution
and he has to sign both inputs. S∗ is able to chose both pieces of the public information, in the real
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ExpufPBS,U∗(K)
1. (parambs)← SetupBS(1K);
2. (pkBS , skBS)← KeyGenBS(parambs);

3.
(
(m1, infoc,1, infos,1, σ1), . . . , (mqs+1, infoqs+1, infos,qs+1, σqs+1)

)
← U∗S

qs (skBS ,·)(pkBS);
4. IF ∃i 6= j, (mi, infoi, infos,i) = (mj , infoj , infos,j)

OR ∃i,VerifBS(pkBS ,mi, infoi, infos,i, σi) = 0, RETURN 0
5. ELSE RETURN 1

Figure 4.4: Unforgeability for User-Friendly Partially Blind signatures (One-More Forgery)

case the signer can abort as long as the user’s public information does not suit him, however the public
information should be the same on both challenged message.
PBS is unforgeable if, for any polynomial adversary U∗ (malicious user), the advantage SuccufPBS,U∗(K)

is negligible, where SuccufPBS,U∗(K) = Pr[ExpufPBS,U∗(K) = 1], in the security game presented in Figure 4.4,
page 84. In this experiment, the adversary U∗ can interact qs times with the signing oracle S(skBS , ·)
(hence the notation U∗S

qs (skBS ,·)(pkBS)) to execute the user-friendly partially blind signature proto-
col: the adversary should not be able to produce more signatures on distinct tuple (m, info, infos) than
interactions with the signer. Once again we consider the adversary has full control over the public
information.

Perfectly blind signature with partial blindness

Combining the double linear commitments, and the Waters signature while following the intuition de-
scribed in our Signature on Randomizable Ciphertexts, we design a partially-blind signature scheme,
which basically consists in committing the message to be signed. And granted the random coins of the
commitment, the user can unblind the signature sent by the signer exploiting the Strong-Extractability.
Eventually, using the randomizability of the Waters signature, the user breaks all the links that could
remain between the message-signature pair and the transaction. Our protocol proceeds as follows,
on a commitment of F = F(M), a public common message info, and a public message infos cho-
sen by the signer. It is split into five steps, that correspond to an optimal 2-flow protocol: BlindBS ,
which is first run by the user, SignBS , which is thereafter run by the signer, and VerifBS , UnblindBS ,
RandomS that are eventually successively run by the user to generate the final signature. We thus have
U = (BlindBS ;VerifBS ,UnblindBS ,RandomS) and S = SignBS :

• SetupBS(1K) first chooses a bilinear group (p,G,GT , e, g). We need an additional vector ~u =

(u0, . . . , uk)
$← Gk+1 which defines the Waters function F (where k is a polynomial in K and

represents the global length of M ||info||infos), a generator h
$← G, and a tuple of Groth-Sahai

parameters (u1,u2,u3) in the perfectly hiding setting with defines the commitment parameters C:
parambs = (p,G,GT , e, g, h,F , C);

• KeyGenBS(parambs) chooses a random scalar x
$← Zp, which defines the public key as pkBS = Y =

gx, and the secret key as skBS = Z = hx;

• Signature Issuing (S(skBS , info, infos),U(pkBS ,M, info)), which is split in the following steps:

1. BlindBS(M, pkBS ; (r1, r2, r3)): For a message M ∈ {0, 1}` and random scalars (r1, r2, r3)
$← Zp,

define the commitment as c =
(
c1 = ur11,1u

r3
3,1, c2 = ur22,2u

r3
3,2, c3 = gr1+r2ur33,3 · F(M)

)
and

compute Y1,2 = Y r1+r2 , Y3 = Y r3 . One also generates additional proofs of validity of the
commitment:

– A proof ΠM of knowledge of M in c, the encrypted F(M), which consists of a bit-by-bit
commitment CM = (C′(M1), . . . , C′(M`)) and proofs that each committed value is a bit,
and a proof that c3 is well-formed. ΠM is therefore composed of 9 `+ 3 group elements.

– A proof Πr containing the commitments Cr = (C(Y1,2), C(Y3)) and proofs asserting that
they are correctly generated. It requires 9 additional group elements.

Π thus consists of 9 `+ 12 group elements, where ` is the bit-length of the message M

2. SignBS(skBS , (c,Π), info, infos; s): To sign the commitment c, one first checks if the proof Π is
valid. It then appends the public message info = info‖infos to c3 to create c′3 = c3 ·

∏
uinfoii+` ,

which thus becomes a commitment of the Waters function evaluation on M‖info‖infos of
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global length k. It eventually outputs σ = (Z · c′3
s
, us3,3, g

s) together with the additional
public information infos, for a random scalar s ∈ Zp.

3. – Verif(pkBS , (c, info, infos), σ = (σ1, σ2, σ3)): In order to check the validity of the signature,
one first computes c′3 as above, and then checks whether the following pairing equations
are verified: e(σ1, g) ?= e(h, pkBS) ·e(c′3, σ3) and e(σ2, g) ?= e(u3,3, σ3). If it is not the case,
then this is not a valid signature on the original ciphertext, and the blind signature is set
as Σ = ⊥.

– UnblindBS((r1, r2, r3), pkBS , (c, info, infos), σ): If the previous tests are positive, one can
use the random coins r1, r2, r3 to get back a valid signature on M‖info‖infos: σ′ = (σ′1 =
σ1/(σ

r1+r2
3 σr32 ), σ′2 = σ3), which is a regular valid Waters signature.

– RandomS(pkBS , (c, info, infos), σ
′; s′): The latter can eventually be rerandomized as any

Waters signature to get Σ = (σ′1 · F(M ||info||infos)s
′
, σ′2 · gs

′
).

One can note that Σ is a random Waters signature on M ||info||infos:

Σ = (σ′1 · F(M ||info||infos)s
′
, σ′2 · gs

′
)

= (F(M ||info||infos)s
′
· σ1/(σ

r1+r2
3 σr32 ), gs

′
· σ3)

= (F(M ||info||infos)s
′
· Z · c′3

s
/(gs(r1+r2)usr33,3 ), gs+s

′
)

= (F(M ||info||infos)s
′
· Z · gs(r1+r2)usr33,3 · F(M ||info||infos)s/(gs(r1+r2)usr33,3 ), gs+s

′
)

= (F(M ||info||infos)s+s
′
· Z, gs+s

′
)

• VerifBS(pkBS , (M, info, infos),Σ = (Σ1,Σ2)): One checks whether the following pairing equation
holds (Waters signature): e(Σ1, g) ?= e(h, pkBS) · e(F(M ||info||infos),Σ2).
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A message M can be hidden using random
coins r (BlindBS).
The signer can adapt this commitment and
concatenate a public message infos into the
original commitment, with also the com-
mon public information infos, creating a
commitment C ′ on M ′ = M ||info||infos.
A signature on the plaintext can be
obtained using the randomness r (for
UnblindBS); the result is the same as a
direct signature on M ||info||infos by the
signer.
Randomizing this signature is easy, and
prevents the signer to actually know which
ciphertext was the one involved.

Figure 4.5: Partially-Blind Signatures with Perfect Blindness

Theorem 4.4.1 This signer-friendly partially-blind signature scheme is unforgeable under the CDH and
DLin assumption in G.

Proof: Let us denote PBS our above partially-blind signature (but omit it in the subscripts for clarity).
Let us assume there is an adversary A against the unforgeability that succeeds within probability ε, we
will build an adversary B against the CDH problem.

DLin Assumption: The unforgeability means that after qs interactions with the signer, the adversary
manages to output qs + 1 valid message-signature pairs on distinct messages. If the adversary A can do
that with probability ε with the above commitment scheme using a perfectly hiding setting, under the
DLin assumption, A can also generate qs + 1 valid message-signature pairs in a perfectly binding setting,
with not too small probability ε′.
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Signer Simulation: Let us thus now consider the above blind signature scheme with a commitment
scheme using a perfectly binding setting (named PBS ′), and our simulator B can extract values from the
commitments since it knows ν and µ. We thus now assume that A is able to break the unforgeability of
PBS ′ with probability ε′ after qs interactions with the signer. And we build an adversary B against the
CDH problem: Let (A = ga, B = gb) be a CDH-instance in a bilinear group (p,G,GT , e, g).

We now generate the global parameters using this instance: for simulating SetupBS/KeyGenBS , B
picks a random position j

$← {0, . . . , k}, chooses random indexes y0, y1, . . . , yk
$← {0, . . . , 2qs − 1}, and

random scalars z0, z1, . . . , zk
$← Zp. One defines Y = A = ga, h = B = gb, u0 = hy0−2jqsgz0 , and

ui = hyigzi for i = 1, . . . , k. B also picks two random scalars ν, µ, and generates the Groth-Sahai
parameters (u1,u2,u3) in the perfectly binding setting, and thus with (u1 = (u1,1 = gx1 , 1, g),u2 =
(1, u2,2 = gx2 , g),u3 = uν1 � uµ2 ), for two random scalars x1, x2. Note that u3,3 = gν+µ. It outputs
parambs = (p,G,GT , e, g, h,F ,u1,u2,u3); one can note that the signing key is implicitly defined as
Z = ha = Ba = gab, and is thus the expected Diffie-Hellman value.

To answer a signing query on ciphertext c = (c1, c2, c3), with the additional proofs, one first checks the
proof Π. From the proof Π and the commitment secret parameters x1, x2, B can extract M from the bit-
by-bit commitments in ΠM , and Y1,2 = Y r1+r2 , Y3 = Y r3 , from Πr, where c1 = ur11,1u

r3
3,1 and c2 = ur22,2u

r3
3,2.

Furthermore, we can compute c′3 = gr1+r2ur33,3 · F(M ||info||infos). We then denote M ′ = M ||info||infos.
B defines

H = −2jqs + y0 +
∑
i

yiM
′
i , J = z0 +

∑
i

ziM
′
i : F(M ||info||infos) = hHgJ .

If H ≡ 0 (mod p) then B aborts, otherwise it sets

σ = (Y −J/H(Y1,2Y
ν+µ
3 )−1/H(F(M ||info||infos)(c1/x1

1 c
1/x2

2 ))s, (Y −1/Hgs)ν+µ, Y −1/Hgs).

Defining µ̃ = s− a/H, we have

σ1 =Y −J/H(Y1,2Y
ν+µ
3 )−1/H(hHgJ(c

1/x1

1 c
1/x2

2 ))s = Y −J/HY −(r1+r2)/H(Y ν+µ)−r3/H(hHgJgr1+r2ur33,3)s

=Y −J/HY −(r1+r2)/HY −(ν+µ)r3/H(hHgJgr1+r2ur33,3)µ̃(hagaJ/Hga(r1+r2)/Hu
ar3/H
3,3 )

=Y −J/HY −(r1+r2)/HY −(ν+µ)r3/H(hHgJgr1+r2ur33,3)µ̃(ZY J/HY (r1+r2)/HY (ν+µ)r3/H) = Z · (c′3)µ̃

σ3 =Y −1/Hgs = Y −1/Hgµ̃+a/H = gµ̃

σ2 =(σ3)ν+µ = g(ν+µ)µ̃ = uµ̃3,3

It thus exactly looks like a real signature sent by the signer.

Diffie-Hellman Extraction: After at most qs signing queries A outputs qs+1 valid Waters signatures.
Since there are more than the number of signing queries, there is a least one message M∗ that is different
from all the messages M ||info||infos involved in the signing queries. We define

H∗ = −2jqs + y0 +
∑
i

yiM
∗
i , J∗ = z0 +

∑
i

ziM
∗
i : F(M∗) = hH

∗
gJ
∗
.

If H∗ 6≡ 0 (mod p) then B abort, otherwise, for some µ∗, σ∗ = (haF(M∗)µ
∗
, gµ

∗
) = (hagµ

∗J∗ , gµ
∗
). As

a consequence, σ∗1/(σ
∗
2)J

∗
= ha = gab: one has solved the CDH problem.

Success Probability: The Waters hash function is (1, q)-programmable, therefore the previous simu-
lation succeeds with non negligible probability (Θ(ε/qs

√
k)), and so B breaks CDH. �

Theorem 4.4.2 This signer-friendly partially-blind signature scheme achieves perfect blindness.

Proof: The transcript sent to the signer contains a commitment on the message to be signed, but in
a perfectly hiding setting: no information leaks about M . The additional proofs are perfectly witness-
indistinguishable and thus do not provide any additional information about M . This is due to the fact
that in the Groth-Sahai framework in the perfectly hiding setting, for any message M , committed with
randomness r and a message M ′, one can find random r′ such that c(M, r) = c(M ′, r′). Granted the ran-
domizability of the Waters signature, the final output signature is a random signature on M ||info||infos,
on which no information leaked, and so the resulting signature is perfectly independent from the tran-
script seen by the signer, and any adversary. �
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4.4.2 Multi-Blind Signature

We first present a way to obtain a signature on the concatenation of the input messages.
We also present a shorter instantiation which gives a signature on the sum of the input messages.

Such a sum can be useful when working on ballots, sensor informations, etc. Since we still apply the
Waters signature, this led us use the Waters function programmability over a non-binary alphabet, and
so to prove the two results, we showed in section 2.6.4, page 42.

Concatenation

What happens when the original blinded message instead of coming from one single user, is in fact
coming from various users? We now present a new way to obtain a blind signature without requiring
multiple users to combine their messages before sending it, providing once again a round-optimal way to
achieve our goal.

We thus consider a variation of our blind signature scheme. In the Setup phase we no longer create
perfectly hiding Groth-Sahai generators, but perfectly binding parameters, so we do not need to compute
us3,3 to run Unblind, since it will be performed with the decryption key and not the random coins. In
addition, in this scenario, we do not consider a unique user providing a ciphertext, but several users.
As a consequence, the signer will have to produce a signature on a multi-source message, provided as
ciphertexts. The signature and the messages will actually be encrypted under a third-party key. The
third-party only will be able to extract the message and the signature.

Basically the instantiation is similar to the previous ones in the perfectly binding setting. For the
sake of clarity, we remove the partially-blind part, but of course it could be adapted in the same way.
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Figure 4.6: Multi-Source Blind Signature on Concatenation

With the previous building blocks, we will sign several commitments of Fi = Fi(Mi), instead of the
standard (U ,S) interactions we now have three main kind of users, Ui, the user i will blind a commitment
on Fi(Mi), S who signs the blinded message, and T the tallier who will verify/unblind/randomize this
signature:

• SetupBS(1K): In a pairing-friendly environment (p,G,GT , e, g), the algorithm outputs a vector

~u = (u0, (ui,1, . . . , ui,k)1≤i≤j)
$← Gjk+1

where k is a polynomial in K, and a generator h
$← G. We define Fi(Mi) =

∏
` u

mi,`

i,` .

• KeyGenBS(parambs): Choose x
$← Zp, which defines pkBS = Y = gx, and skBS = Z = hx and

generates a pair of perfectly-binding Groth-Sahai generators, which define a decryption key dkBS =
(x1, x2) composed of two scalars.

• (Ui,S, T ):
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– BlindBS(M, pkBS ; (r1, r2, r3)) (where we omit the subscripts i): For a message M ∈ {0, 1}k
and random scalars in Zp, define the commitment c = C(F(M)) = (c1, c2, c3). We also add,
as before, proofs of validity of this commitment:

∗ A proof ΠM of knowledge of M in c, the encrypted F(M), which consists of a bit-by-
bit commitment CM = (C′(M1), . . . , C′(Mk)) and proofs that each committed value is a
bit. A proof that c3 is well-formed i.e. c is a double linear encryption of the message M
committed in CM .

∗ A proof Πr containing the commitments Cr = (C(Y r1+r2), C(Y r3)) together with proofs
asserting that they are well-formed.

– SignBS(skBS , (c = (c1,i, c2,i, c3,i),Πi)1≤i≤j ; s): To sign several commitments, first check if they
are valid with respect to the proofs Π’s, and after some randomizations of those commitments,
compute the global commitment C = (

∏
c1,i,

∏
c2,i, u0

∏
c3,i) which is still verifiable thanks

to the previous (randomized) proofs, and then output C = (C1, C2, C3) and σ = (Cs1 , C
s
2 , Z ·

Cs3 ; gs). We want to emphasize that u0 is primordial in C3 for the unforgeability.

– Verif(pkBS , (C = (C1, C2, C3)), σ = (σ1, σ2, σ3;σ4)): In order to check the validity of the
signature, one checks whether the following equations are verified: e(σ1, g) ?= e(C1, σ4),
e(σ2, g) ?= e(C2, σ4), and e(σ3, g) ?= e(h, pkBS) · e(C3, σ4)

– UnblindBS(dkBS , pkBS , (c = (C1, C2, C3),Π, σ)): On a valid signature, knowing the decryp-
tion key (x1, x2), one can obtain F = F(M), and extract the message M from the bit-
by-bit commitments. One can also extract the corresponding valid signature: σ′ = (σ′1 =

σ3/(σ
1/x1

1 σ
1/x2

2 ), σ′2 = σ4), which is a valid Waters signature on the concatenation of the
messages.

– RandomS(pkBS ,M, σ′; s′): The latter can eventually be rerandomized to get a signature: Σ =
(σ′1 · F(M)s

′
, σ′2 · gs

′
).

• VerifBS(pkBS ,M, σ = (σ1, σ2)): In order to check the validity of the signature, one checks whether:
e(σ1, g) ?= e(h, pkBS) · e(F(M), σ2).

Theorem 4.4.3 This multi-source blind signature scheme for concatenation is blind and unforgeable
under the CDH and DLin assumptions: no adversary can generate more message-signature pairs on
distinct messages, than the number of interactions with the signer.

It directly follows from the previous result, combining the different partial Waters hashes into a global
one does not weaken the security as we are still using single exponents on the ui elements. Groth-Sahai
proofs are in the perfectly binding setting to guarantee that each user really outputs Waters hash of
their message on their generators and so no strange collision may occur and alter the final message.

Addition

The previous scheme presents a way to combine multiple blind messages into one in order to sign
it. However it requires a huge number of generators and the final unblinded signature gives a lot of
information on the repartition of the original messages, since they are simply concatenated. We now
want to improve the previous scheme to drastically reduce the public key size, and the information leaked
about the individual messages when one would like a signature on some computation on these messages,
such as the addition or the mean. Instead of signing the concatenation of the messages, we now allow
the users to use the same generators, and thus the messages will add together instead of concatenating.

The resulting algorithm is the same as before except during the Setup phase where ~u = (u0, . . . , uk)
$←

Gk+1. We then proceed as before considering F(Mi) =
∏
` u

mi,`

` . The Unblind algorithm now returns
a valid signature on the sum of the messages. The various Groth-Sahai proofs help to ensure that the
messages given to the Waters hash function are of reasonable size.

With this construction, the exponents in the Waters hash function are no longer bits but belong to
a larger alphabet (e.g. {0, . . . , t} if t users sign only bit strings). Following the work done in [HK08],
we have shown in section 2.6.4, page 42 that over a non-binary alphabet the Waters function remains
(1, poly)-programmable as long as the size of the alphabet remains a polynomial in the security parameter.
This result readily implies the security of the multi-source blind signature scheme for addition:

Theorem 4.4.4 This multi-source blind signature scheme for addition is blind and unforgeable under
the CDH assumption as long the alphabet size and the number of sources are polynomial in the security
parameter.
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4.4.3 Other Applications

Our blind signature schemes find applications in various practical settings.

E-voting. We said earlier, that the security of several e-voting protocols relies on the fact that each
ballot is certified by an election authority. Since this authority should not learn the voter’s choice, a
blind signature scheme is useful. In order to achieve privacy of the ballot in an information-theoretic
sense, it is necessary to use a signature scheme that achieves perfect blindness. Our scheme is the first
to achieve this property in the standard model and under classical complexity assumptions. Moreover
if the authority wants to format the ballot (for example to add the date of the election), our signature
being partially-blind it can be achieved easily.

E-cash. As mentioned above, partially-blind signatures played an important role in many electronic
commerce applications. In e-cash systems, for instance, the bank issuing coins must ensure that the
message contains accurate information such as the face value of the e-cash without seeing it and moreover
in order to prevent double-spending, the bank’s database has to record all spent coins. Partially-blind
signatures can cope with these problems, since the bank can explicitly include some information such as
the expiration date and the face value in the coin. Thanks to our proposal, the coin issuing protocol can
be done without prior agreement between the bank and the client.

Data aggregation in networks. A wireless (ad hoc) sensor network (WSN) consists of many sensor nodes
that are deployed for sensing the environment and collecting data from it. Since transmitting and
receiving data are the most energy consuming operations, data aggregation has been put forward as an
essential paradigm in these networks. The idea is to combine the data coming from different sources –
minimizing the number of transmissions and thus saving energy. In this setting, a WSN consists usually
of three types of nodes:

• sensor nodes that are small devices equipped with one or more sensors, a processor and a radio
transceiver for wireless communication.

• aggregation nodes (or aggregators) performing the data aggregation (e.g. average, sum, minimum
or maximum of data).

• base stations responsible for querying the nodes and gathering the data collected by them.

WSNs are at high security risk and two important security goals when doing in-network data aggregation
are data confidentiality and data integrity. When homomorphic encryption is used for data aggregation,
end-to-end encryption allows aggregation of the encrypted data so that the aggregators do not need to
decrypt and get access to the data and thus provides end-to-end data confidentiality. Achieving data
integrity is a harder problem and usually we do not consider the attack where a sensor node reports a
false reading value (the impact of such an attack being usually limited). The main security flaw is a data
pollution attack in which an attacker tampers with the intermediate aggregation result at an aggregation
node. The purpose of the attack is to make the base station receive the wrong aggregation result, and
thus make the improper or wrong decisions.

While in most conventional data aggregation protocols, data integrity and privacy are not preserved
at the same time, our multi-source blind signature primitive permits to achieve data confidentiality and
to prevent data pollution attacks simultaneously by using the following simple protocol:

1. Data aggregation is initiated by a base station, which broadcasts a query to the whole network.

2. Upon receiving the query, sensor nodes report encrypted values of their readings (for the base
station public key) to their aggregators

3. The aggregators check the validity of the received values, perform data aggregation via the homo-
morphic properties of the encryption scheme, (blindly) sign the result and route the aggregated
results back to the base station.

4. The base station decrypts the aggregated data and the signature which proves the validity of the
gathered information to the base station (but also to any other third party).

Conclusion

In this part, we have presented several results, coming primarily from [BFPV11,BP12].
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First, we focused on some applications of Groth-Sahai methodology to provide enhanced version of
Group Signatures, i.e. Traceable Signatures, and List Signatures, while remaining in the standard model,
solving this way the open problem of List Signatures in the standard model.

We also presented, and instantiated under classical hypothesis, a new primitive called Signature on
Randomizable Ciphertext. This primitive allowed us to build a round optimal blind signature scheme
which outputs a short signature. It also lead us to diverse instantiations (perfectly blind signature,
signer-friendly blind signature, multi-blind signature).

Those primitives are both done following the Groth-Sahai methodology, and based on the same tools.
One can imagine a combination of both to create a Group Blind Signature [LR98] in the standard model,
where we would have two sets of Groth-Sahai CRS, one for the anonymity/opening (So to commit to
σ1, σ2, σ3 in the traceable signature) and the other to blind the message/signature (To commit to σ5). The
final blinded signature would be (ID, C1(σ1), C1(σ2), C1(σ3), σ4, C2(σ5), σ6), where knowing the extraction
key associated with C2 gives our traceable signature on the plaintext, whereas knowing the extraction
key associated with C1 lets the opener break the anonymity.

However, these last primitives, while being the most efficient when they were introduced, can still
be improved. This made us consider that while Groth-Sahai proofs are the most efficient NIWI/NIZK
proofs in the standard model, one may consider another approach in interactive scenarios (like in Blind
Signatures). This will be the starting point of our next chapter.

?
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Using Smooth Projective Hash
Functions to Create Implicit Proofs
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In the previous part, we presented various schemes relying on Groth-Sahai proof systems to show the
knowledge of a secret. However, the second example, the Blind Signature is interactive, and while our
protocol was more efficient than existing ones, we wondered why we should use a non-interactive proof
system when there already is an interaction. What if, we could supplant this proof by an implicit one,
more efficient, without increasing the number of rounds?

Starting from this idea we now focus on Smooth Projective Hash Functions [CS02]. See section 2.2.4,
page 24 for a formal definition, and chapter 5, page 93 for the sets of languages we manage to handle.

We show in the following chapters that this approach is suitable for designing schemes that rely
on standard security assumptions in the standard model with a common-reference string and are more
efficient than those obtained using the Groth-Sahai methodology.

In Chapter 6, page 102, we focus on applications of our new methodology. We start with Oblivious
Signature-Based Envelope [LDB03], and show that we can manage round optimality thanks to SPHF.
Using the same design, we are then going to improve our blind signature scheme from the previous chapter
by simply superseding Groth-Sahai proofs by a Smooth Projective Hash Function on an appropriate
language, and so supplanting the NIZK by an implicit proof of knowledge.

We then proceed forward, and use SPHF as implicit proofs of knowledge in other interactive protocols.
We present our Language Authenticated Key Exchange in Section 6.3, page 111, which is a generalization
of Password Authenticated Key-Exchange where two users agree on a shared key if both possess a word in
a language expected by the other. We are going to prove it in the UC framework with static corruptions
under classical hypothesis, and present efficient PAKE, verifier-based PAKE, and Secret Handshakes
instantiations. We also compare our scheme to the CAKE primitive which is closely related.
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In this chapter we cover the languages than can be handled by our methodology of implicit proofs
on knowledge thanks to a Smooth Projective Hash Function. In section 2.2.4, page 24, we recalled how
to combine two SPHF on different languages to create a new one on the conjunction or the disjunction
of those languages. However the original set of manageable languages was not really developed, and so
we are going to present several steps to extend it.

Intuitively our methodology aims to transform every language to the evaluation of a Linear Tuple /
Diffie Hellman with respect to the public information. We will construct progressively more and more
complicated SPHF on more and more vast languages.

In [ACP09], Abdalla et al. already formalized languages to be considered for SPHF. In the following,
we will however use a more simple formalism, which is nevertheless more general: we consider any
efficiently computable binary relation R : {0, 1}∗ × P × S → {0, 1}, where the parameters pub ∈ {0, 1}∗
and priv ∈ P define the language LR(pub, priv) ⊆ S of the words W such that R(pub, priv,W ) = 1:

• pub are public parameters;

• priv are private parameters the two players have in mind, and they should think to the same values:
they will be committed to, but never revealed;

• W is the word the sender claims to know in the language: it will be committed to, but never
revealed.

In the whole chapter, we will consider the existence of a bilinear group (p,G,GT , e, g), with a Linear
Encryption scheme which will only be seen as a commitment scheme. We will do everything with a linear
encryption scheme as a commitment, however this can be done with an ElGamal encryption if we do
not need pairing, or are in an asymmetric setting. We can even use a CCA-2 variant, as explained in
section 5.3, page 99.

In the following we are going to assume, that the following commitment scheme is defined in the
CRS:

• Setup: Outputs a commitment key ck = (u, v, w) ∈ G3.

• Commit(ck, X;α, β): For X ∈ G and α, β
$← Z2

p, defines c =
(
c1 = uα, c2 = vβ , c3 = wα+β ·X

)
.

• Decommit(c = (c1, c2, c3), X, α, β): One checks that c = ι(X)� (uα, vβ , wα+β).

93
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5.1 First Languages

In this section, we consider the language of Valid Signatures. This language is easily checkable so we can
not directly expect pseudo-randomness, however if we consider the language composed of commitment
of valid signatures, under the indistinguishability of the commitment this is a hard-partitioned subset.

In the following, we will assume there exists a Waters Signature scheme.

• SetupS(1K): Outputs h ∈ G, and (ui)J0,kK for the Waters function F .

• KeyGenS(param): Picks a random x
$← Zp and outputs sk = Y = hx, and vk = X = gx;

• Sign(sk,m;µ): outputs σ(m) = (Y F(m)µ, g−µ);

• Verif(vk,m, σ): checks if the following pairing equation holds: e(g, σ1) · e(F(m), σ2) ?= e(X,h).

5.1.1 Commitment of a Valid Signature

We first start, with language Lvk,m, of commitments under ck of a valid signature on m under vk. We
will note it WLin(ck, vk,m). Here, the private component of the language is empty ∅.

A given ciphertext c = (c1, c2, c3, σ2) contains a valid signature of m if and only if (c1, c2, c3) actually
encrypts σ1 such that (σ1, σ2) is a valid Waters signature on m. If we note � the component-wise
division, we can consider the ciphertext C defines from the latter as:

C = e(c, g)� ιT (e(σ1, g))
= e(c, g)� ιT (e(h, vk) · e(F(m), σ2)))
= (C1 = e(c1, g), C2 = e(c2, g), C3 = e(c3, g)/(e(h, vk) · e(F(m), σ2))

C is a linear tuple in basis (U = e(Y1, g), V = e(Y2, g), gT = e(w, g)) in GT . Since the basis consists of
3 elements of the form e(·, g), the projected key can be compacted in G. We thus consider the language
WLin(vk,m) that contains these quadruples (c1, c2, c3, σ2), and proceeds as described below:

• Pre-Commit: The Prover does nothing (priv is empty, no helper values are required)

• Projection Keys: The Verifier computes and sends hp thanks to his random-tape ωV .

ωV = HashKG(WLin(ck, vk,m)) = hk = (x1, x2, x3)
$← Z3

p

ProjKG(hk;WLin(ck, vk,m), c) = hp = (ckx1
1 gx3 , ckx2

2 gx3)

• Commit: The Prover commits to his signature σ1, σ2 thanks to ck and so produces (c1, c2, c3, σ2) =

(ckα1 , ck
β
2 , g

α+βhxF(m)s, gs) for some scalars α, β, t
$← Zp,

• Hashing: The Verifier computes his view of the Hash, and so does the Prover:

Hash(hk;WLin(ck, vk,m), c) =

e(c1, g)x1e(c2, g)x2(e(c3, g)/(e(h, vk)e(F(m), σ2)))x3

ProjHash(hp;WLin(ck, vk,m), c;α, β) = e(hpα1 hp
β
2 , g)

We use the public information vk and σ2 to remove the signature part of the commitment, and only
check if C is a linear tuple in GT . If c is not in the language, then the decommit process does not lead
to a valid signature on m, so C is not a linear tuple, and by the smoothness of the SPHF, the prover
cannot guess the Hash value. Here follows the proof of such smoothness:

Proof: Let us show that from an information theoretic point of view, v = Hash(hk,WLin(ck, vk,m), c)
is unpredictable, even knowing hp, when c is not a correct ciphertext on a valid signature: C =
(uα, vβ , wγσ1, σ2), for γ 6= α+β. (i.e. for all ciphertext, there exists a unique γ ∈ Zp such that σ1, σ2 is in-
deed a valid signature onmunder vk.) We recall that we have previously defined Hash(hk;WLin(ck, vk,m), c)
as e(u, g)αx1e(v, g)βx2e(w, g)γx3 and hp = (ux1wx3 , ux2wx3):

If we denote u = wy1 and v = wy2 , and consider discrete logarithm in basis gT we then have: log e(hp1, g)
log e(hp2, g)

log v

 =

 y1 0 1
0 y2 1
y1α y2β γ

 ·
 x1

x2

x3


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The determinant of this matrix is y1y2(γ − α− β), which is non-zero if C (and so c) does not belong to
the language. So v is independent from hp and c. �

Theorem 5.1.1 This Smooth Projective Hash Function is pseudo-random under the DLin assumption
(the semantic security of the Linear encryption).

Proof: As shown above, when c encrypts σ(m′) for a m′ 6= m, then the following distributions are
perfectly indistinguishable:

D1 = {WLin(ck, vk,m), c = Cck(σ(m′)), hp, v
$← GT }

D2 = {WLin(ck, vk,m), c = Cck(σ(m′)), hp, v = Hash(hk,WLin(ck, vk,m), c)}

Under the semantic security of the Linear encryption, Cck(σ(m)) and Cck(σ(m′)) are computationally
indistinguishable, and so are the distributions

D0 = {WLin(ck, vk,m), c = Cck(σ(m)), hp, v
$← GT }

D1 = {WLin(ck, vk,m), c = Cck(σ(m′)), hp, v
$← GT }

and the distributions

D2 = {WLin(ck, vk,m), c = Cck(σ(m′)), hp, v = Hash(hk;WLin(ck, vk,m), c)}
D3 = {WLin(ck, vk,m), c = Cck(σ(m)), hp, v = Hash(hk;WLin(ck, vk,m), c)}

As a consequence, D0 and D3 are computationally indistinguishable, which proves the result. �

With this extension to the original set of languages, we are now able to instantiate Oblivious
Signature-based Envelope thanks to the Smooth Projective Hash Function, as we will wee in section 6.1.3,
page 109.

5.1.2 Extended Commitment of a Message

We are now going to continue to try to combine different languages. Now we can wonder what happens
if instead of combining a Hard-Partitioned Subset language, with a verifiable one, we simply combine
two together.

In our previous construction of Signature on Randomizable Ciphertexts in Section 4.2.2, page 76,
we instantiated Blind Signatures, for that we had to commit to an extended message (the message,
and some variation of the verification key). We had to combine two languages, one showing that we
indeed committed the message bit per bit in (di,1, di,2, di,3) with randomness αi, βi, but this is simply
a conjunction of disjunctions of a standard language, we will note it BLin, the other showing that is we

note d1 =
∏
di,1 = ck

∑
αi

1 = ckα1 , d2 =
∏
di,2 = ck

∑
βi

1 = ckβ1 then, we do have in c1, c2, c3, d1, d2 a
commit of a linear tuple.

Bit Encryption Language

When we need to ”prove” that a ciphertext encrypts a bit in exponent of a basis ui, we consider the
language BLin(ck, ui) = Lin(ck, 1G) ∪ Lin(ck, ui). This is thus a simple disjunction of two SPHF:

• HashKG(BLin(ck, ui)): hk = ((x1, x2, x3), (y1, y2, y3))
$← Z6

p

• ProjKG(hk,BLin(ck, ui),W ): hp = ((ux1wx3 , vx2wx3), (uy1wy3 , vy2wy3), hp∆) where

hp∆ = cx1
1 cx2

2 (c3)x3 · cy1

1 c
y2

2 (c3/ui)
y3

• Hash(hk,BLin(ck, ui),W ): v = cx1
1 cx2

2 cx3
3

• ProjHash(hp,BLin(ck, ui),W,w): If W ∈ L1, v′ = hpαi
1,1 · hp

βi

1,2,

else (if W ∈ L2), v′ = hp∆/hp
αi
2,1 · hp

βi

2,2

The correctness, smoothness and pseudo-randomness properties of such function directly follow from
those of the SPHF on Lin(pk, 1G) and Lin(pk, ui). Each final projection key is composed of 5 group
elements.
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Encryption of a Linear Tuple

So we need to consider a language ELin(ck, vk) of tuples (d1, d2, c1, c2, c3), where (c1, c2, c3) is a commit
to d3 under the public key ck = (u, v, w), such that (d1, d2, d3) is a linear tuple in basis (u, v, vk). This
can also be expressed as c3 = α× d3, where d3 is the plaintext in (c1, c2, c3) under ck, which means that
(c1, c2, α) is a linear tuple in basis (u, v, w), and (d1, d2, d3) should be a linear tuple in basis (u, v, vk).

More concretely, we consider words W = (d1 = uα, d2 = vβ , c1 = us1 , c2 = vs2 , c3 = ws1+s2 · vkα+β),
with witnessW = (α, β, s1, s2). We have d3 = vkα+β and c3/d3 = ws1+s2 , but they should remain secret,
which requires a specific function, and not a simple conjunction of languages:

• HashKG(ELin(ck, vk)): hk = (x1, x2, x3, x4, x5)

• ProjKG(hk,ELin(ck, vk),W ): hp = (ux1gx5 , vx2gx5 , ux3wx5 , vx4wx5)

• Hash(hk,ELin(ck, vk),W ): v = e(d1, vk)x1 · e(d2, vk)x2 · e(c1, g)x3 · e(c2, g)x4 · e(c3, g)x5

• ProjHash(hp,ELin(ck, vk),W,W): v′ = e(hp1, vk)α · e(hp2, vk)β · e(hp3, g)s1 · e(hp4, g)s2

We now study the security of this SPHF:

Theorem 5.1.2 This Smooth Projective Hash Function is correct.

Proof: With the above notations:

v = e(d1, vk)x1 · e(d2, vk)x2 · e(c1, g)x3 · e(c2, g)x4 · e(c3, g)x5

= e(uxαx1 , g) · e(vxβx2 , g) · e(us1x3 , g) · e(vs2x4 , g) · e(gx(α+β)x5w(s1+s2)x5 , g)

= e(uxαx1+s1x3 , g) · e(vxβx2+s2x4 , g) · e(gx(α+β)x5w(s1+s2)x5 , g)

v′ = e(hp1, vk)α · e(hp2, vk)β · e(hp3, g)s1 · e(hp4, g)s2

= e(uxαx1gxαx5 , g) · e(vxβx2gxβx5 , g) · e(us1x3ws1x5 , g) · e(vs2x4ws2x5 , g)

= e(uxαx1+s1x3 , g) · e(vxβx2+s2x4 , g) · e(gx(α+β)x5w(s1+s2)x5 , g)

�

Theorem 5.1.3 This Smooth Projective Hash Function is smooth.

Proof: Let us show that from an information theoretic point of view, v is unpredictable, even knowing
hp, when W is not in the language: W = (d1 = uα, d2 = vβ , c1 = us1 , c2 = vs2 , c3 = wt · vkα+β), for
t 6= s1 + s2. We recall that

v = e(uxαx1+s1x3 , g) · e(vxβx2+s2x4 , g) · e(gx(α+β)x5w(s1+s2))x5 , g) = e(H, g)

for
H = uxαx1+s1x3 · vxβx2+s2x4 · gx(α+β)w(s1+s2)x5

and
hp = ((ux1gx5 , vx2gx5), (ux3wx5 , vx4wx5))

If we denote u = gy1 , v = gy2 and w = gy3 , we have:
log hp1

log hp2

log hp3

log hp4

logH

 =


y1 0 0 0 1
0 y2 0 0 1
0 0 y1 0 y3

0 0 0 y2 y3

xαy1 xβy2 s1y1 s2y2 y3t+ x(α+ β)

 ·


x1

x2

x3

x4

x5


The determinant of this matrix is (y1y2)2(y3(t−(s1+s2))+(x(α+β)−x(α+β))) = (y1y2)2y3(t−(s1+s2)),
which is non-zero if W does not belong to the language (t 6= s1 + s2). So v is independent from hp and
W . �

Theorem 5.1.4 This Smooth Projective Hash Function is pseudo-random under the DLin assumption
(the semantic security of the Linear encryption).

Proof: The fact that c3 really encrypts d3 that completes well (d1, d2) is hidden by the semantic security
of the linear encryption, and so under the DLin assumption. So the proof works as above, on the Linear
Language. �
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Combination of both

The resulting language is then the conjunction of:

• Each BLin(ck, ui), that emphasizes that each each commitment is indeed to a bit in basis ui

• ELin(ck, vk), to show that the original commitment was indeed to a revisited Waters signature,
with respect to the verification key vk.

With this we can now commit bit per bit to a message, and build a SPHF to check if we indeed
committed bits (BLin). And then, as explained in the introduction, considering the component-wise
product of all bit commitments, we can show it fits with the language described as (ELin).

Such approach can be continued to show more complex predicate. Like ”I possess a signature on a
message I do not want to give, under a verification key in a pre-agreed subset I do not want to give”.

However, this all boils down to prove the validity of some (linear) pairing-equations. So we will show
a generic construction allowing us to do so in the next session.

5.2 Linear Languages

For the Waters signature, we considered the equation e(σ1, g) ?= e(h, vk) ·e(F(m), σ2), where σ1 only was
encrypted, and all the other elements were public. We can consider more general language families. Their
instantiations through our framework can be handled the same way, where the final hash is HL for “the
commitment belongs to the language L”. For the latter, one can consider more general equations, such
as any linear pairing product equations: t equations of the form

(∏
i∈Ak

e(Yi,Ak,i)
)
·
(∏

i∈Bk
Zzk,i

i

)
= Bk,

for k = 1, . . . , t, where Ak,i ∈ G, Bk ∈ GT , and zk,i ∈ Zp, as well as Ak ⊆ J1,mK and Bk ⊆ Jm + 1, nK
are public. This is more general than the relations covered by [CCGS10]. When compared to the Groth
and Sahai methodology, we cannot handle (yet) quadratic equations (i.e. with a pairing between two
committed variables), but we can sometimes work without pairings (when the language is not solely
defined by a pairing), and also with committed variables in GT .

5.2.1 A Single Equation

Let us assume that we have an equation over secret variables Yi to be committed in G, in ci, for
i ∈ J1,mK and Zi to be committed in GT , in Ci, for i ∈ Jm + 1, nK, and we want to show they satisfy
(
∏m
i=1 e(Yi,Ai)) ·

(∏n
i=m+1Z

zi
i

)
= B, where Ai ∈ G, B ∈ GT , and zi ∈ Zp are public.

If we note ck = (u, v, w) the commitment key in G, the commitment key in GT is simply e(ck, g) =
(U = e(u, g), V = e(v, g),W = e(w, g)).

We also define (Ui = e(u,Ai), Vi = e(v,Ai),Wi = e(w,Ai)),Zi = e(Yi,Ai) for i ∈ J1,mK, and
(Ui = U zi , Vi = V zi ,Wi = W zi),Ai = gzi for i ∈ Jm+ 1, nK.

For i ∈ J1,mK, we can simply consider Ci, the ci in GT :

Ci = e(ci,Ai) for i ∈ J1,mK
= (Urii , V

si
i ,W ri+si

i e(Yi,Ai)) for i ∈ J1,mK
= (Urii , V

si
i ,W ri+si

i Zi) for i ∈ J1,mK
And we already had:

Ci = (Urii , V
si
i ,W ri+si

i Zi) for i ∈ Jm+ 1, nK

• Pre-Commit: With such linear encryption, and pairing equations we do not have private languages,
nor helper values.

• Projected Hash: For the hashing keys, the Verifier picks scalars (λ, (ηi, θi)i=1,...,n)
$← Z2n+1

p , and
sets hki = (ηi, θi, λ). And then computes and sends the projection keys as ∀i ∈ J1, nK, hpi =
(uηiwλ, vθiwλ) ∈ G2. The associated projection keys in GT are HPi = (e(hpi,1,Ai), e(hpi,2,Ai)),
for i ∈ J1, nK.

• Commit: The Prover now sends all his ci and for i > m,Ci. (The previous Ci are computable
thanks to the ci, and elements in G are far less expensive than those in GT .)



98 Manageable Languages 5.2

• Hash: The hash value is then

H =

(∏
i

Cηii,1 · C
θi
i,2 · C

λ
i,3

)
× B−λ

=

(∏
i

Uriηii · V siθii ·W (ri+si)λ
i Zλi

)
× B−λ

=

(∏
i

HPrii,1HP
si
i,2Z

λ
i

)
× B−λ

=
∏
i

HP
zri
i,1 HP

zsi
i,2 =

(
m∏
i=1

e(hprii,1,Ai) · e(hp
si
i,2,Ai)

)
·

(
e(

n∏
i=m+1

hprii,1, g
zi)·e(

n∏
i=m+1

hpsii,2, g
zi)

)
which can be computed either from the commitments and the hashing keys, or from the projection
keys and the witnesses.

We are first going to extend this protocol to several equations at once, and then prove the smoothness
of such protocol, the pseudo-randomness being a direct consequence of the indistinguishability of the
encryption scheme.

5.2.2 Multiple Equations

Let us assume that we have Yi committed in G, in ci, for i ∈ J1,mK and Zi committed in GT , in Ci, for
i ∈ Jm+ 1, nK, and we want to show they simultaneously satisfy(∏

i∈Ak

e(Yi,Ak,i)

)
·

(∏
i∈Bk

Zzk,i

i

)
= Bk, for k ∈ J1, tK.

where Ak,i ∈ G, Bk ∈ GT , and zk,i ∈ Zp, as well as Ak ⊆ J1,mK and Bk ⊆ Jm + 1, nK are public. As
above,one can also derive the commitments in GT , Ck,i that correspond to the encryption of Zk,i =
e(Yi,Ak,i) under the keys e(ck,Ak,i).

• Pre-Commit: With such linear encryption, and pairing equations we do not have private languages,
nor helper values.

• Projected Hash: For the hashing keys, the Verifier picks scalars (λ, (ηi, θi)i=1,...,n)
$← Z2n+1

p , and
sets hki = (ηi, θi, λ). And then computes and sends the projection keys as ∀i ∈ J1, nK, hpi =
(uηiwλ, vθiwλ) ∈ G2. The associated projection keys in GT are ∀i ∈ J1, nK,∀k ∈ 1, t,HPk,i =
(e(hpi,1,Ak,i), e(hpi,2,Ak,i)).

• Commit: The Prover now sends all his ci and for i > m,Ci. (The previous Ci are computable
thanks to the ci, and elements in G are far less expensive than those in GT )

• Small-Exponents Test: The Verifier, now picks and sends {εk}k∈J1,tK
$← Ztp. We insist on the fact

that the εk’s have to be sent after the commitments have been sent. (Or at least committed to,
under a computationally binding commitment.)

• Hash: The hash value is then

H =
∏
k

(( ∏
i∈Ak∪Bk

Cηik,i,1 · C
θi
k,i,2 · C

λ
k,i,3

)
× B−λk

)εk

=
∏
k

( ∏
i∈Ak∪Bk

HPrik,i,1 · HP
si
k,i,2

)εk
×
∏
k

(∏
i∈Ak

e(Yi,Ak,i)×
∏
i∈Bk

Zzk,i

i × B−1
k

)λεk

=
∏
k

( ∏
i∈Ak∪Bk

HPrik,i,1 · HP
si
k,i,2

)εk
× 1

which can be computed either from the commitments and the hashing keys, or from the projection
keys and the witnesses.

It should be noted that this protocol requires 3m elements in G for each variable in G, 3n−m in GT
for each in GT , 2n in G for the projection keys, and t scalars for the small exponents.
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5.2.3 Smoothness of a SPHF on Linear Pairing Product Equations

The list of commitments should be considered in the language if and only if:

• the commitments are all valid Linear ciphertexts (in either G or GT ), which is easily checkable
with a linear encryption

• the plaintexts satisfy the linear pairing product equations

Here is a proof of the smoothness of such SPHF:

Proof: Let us assume that the equation k is not verified, then it means that for some index i ∈ J1, nK,
the ciphertext Ci,k in GT satisfies Ci,k = (Urii,k, V

si
i,k,W

tiZk,i) with ti 6= ri + si. Then, the contribution

of this ciphertext in the hash value is (Cηi
i,k,1 ·C

θi
i,k,2 ·Cλ

i,k,3)ε
′
i , where ε′i =

∑
k,i∈Ak∪Bk

εk, knowing the
projection keys that reveal, at most,

logu hpi,1 = ηi + x3 × λ and logu hpi,2 = x2 × θi + x3 × λ,

where v = ux2 w = ux3 . This contribution is thus (Uriηi+x2siθi+x3tiλ
i,k )ε

′
i . But even if all the discrete

logarithms were known, and also λ, one has to guess M = riηi + x2siθi + x3tiλ, given ηi + x3λ and
x2 × θi + x3 × λ:

M> =

 1 0 x3

0 x2 x3

ri x2si x3ti

 ·
 η1

θi
λ

 .

This matrix determinant is x2x3(ti − (ri + si)), that is non-zero as soon as ti 6= ri + si. In this case,
there is no way to guess the correct value better than by chance: 1/p. Hence the smoothness of this hash
function when one equation is not verified.

About the equation validity, the ci or Ci of the involved ciphertexts contain plaintexts Yi or Zi, and
contribute to the hash value: from the projection keys, the k-th equation contributes to

Hk =

(∏
i∈Ak

HPrik,i,1 · HP
si
k,i,2 ×

∏
i∈Bk

(
HPrii,1 · HP

si
i,2

)zk,i

)εk
×

(∏
i∈Ak

e(Yi,Ak,i)×
∏
i∈Bk

Zzk,i

i × B−1
k

)λεk
.

Let us denote αk =
∏
i∈Ak

e(Yi,Ak,i)×
∏
i∈Bk

Zzk,i

i ×B−1
k , then the uncertainty about H is (

∏
k α

εk
k )λ.

As soon as one of the equations is not satisfied, one of the αk is different from 1. Since the εk’s are
unknown at the commitment time, one cannot make the αk to compensate themselves, but by chance:
if one equation is not satisfied, the probability that

∏
k α

εk
k = 1 is 1/p. Excepted this negligible case,

(
∏
k α

εk
k )λ is totally unpredictable since λ is random. �

5.3 With Other Kinds of Commitments

In the previous sections, we have handled the cases where the commitment scheme used was a linear
encryption, and what we have seen is that for all the possible languages we were able to create projection
key verifying that some specific tuple was indeed a linear encryption of a precise plaintext. Now what
happens when we use another kind of commitment?

In this section, we are first going to present briefly how to create SPHF when the commitment used
in a Multi-Linear Cramer-Shoup (see Section 2.6.5, page 51), and then consider our commitment à la
Lindell (see Section 2.6.6, page 52).

5.3.1 With a Multi-Linear Cramer-Shoup

In Section 2.6.5, page 51, we defined a Multi-linear Cramer-Shoup of a vector ~M as Encrypt(`, pk, ~M ;~r,~s),

for a vector ~M ∈ Gn and vectors ~r,~s ∈ Znp , computes

C = (C1, . . . , Cn), where Ci = (ui = (gri1 , g
si
2 , g

ri+si
3 ), ei = Mi · hri1 h

si
2 , vi = (c1d

ξ
1)ri(c2d

ξ
2)si)

where the vi’s are computed afterwards with ξ = HK(`,u1, . . . ,un, e1, . . . , en).
The committer may decommit such vector C by simply sending the randomness he used during the

commitment. So like with theregular linear encryption we build a SPHF on this commitment.
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The verifier will compute a Hash key hk by picking blocks of five random scalars ηi, θi, κi, λi, µi
$← Z5n

p ,

and produce blocks of two projection keys hpi = (gηi1 g
κi
3 hλi

1 (c1d
ξ
1)µi , gθi2 g

κi
3 hλi

2 (c2d
ξ
2)µi).

The initial committer will now be able to compute a hash value H =
∏
i hp

ri
i,1hp

si
i,2 and sends it to

the verifier together with ~M .
Now the verifier can check that C was indeed a valid commitment to ~M , by computing the product

of each Hi, where Hi =
∏
i C

ηi
i,1C

θi
i,2C

κi
i,3(Ci,4/Mi)

λiCµi

i,5.
Such SPHF simultaneously checks that C was well-formed, and that the associated plaintext was M .

Theorem 5.3.1 Under the DLin assumption, the above smooth projective hash function is both smooth
and pseudo-random:

• Smoothness: Advsmooth
Π = 0;

• Pseudo-Randomness: AdvprΠ(t) ≤ Advdlinp,G,g(t).

Proof: For the correctness, one can easily check that if C contains M ′ = M , then H = H ′:

H = uη1u
θ
2u
κ
3 (e/W )λvµ = (gzr1 )η(gzs2 )θ(gzr+zs

3 )κ(hzr1 h
zs
2 W

′/W )λ(vzr1 vzs2 )µ

= (gη1g
κ
3h

λ
1v
µ
1 )zr × (gθ2g

κ
3h

λ
2v
µ
2 )zs × (W ′/W )λ = hpzr1 hpzs2 × (W ′/W )λ = H ′ × (W/W ′)λ.

Smoothness: if C is not a correct encryption of W , then H is unpredictable: let us denote W ′ and z′s
such that C = (~u = (gzr1 , gzs2 , g

zt
3 ), e = W ′hzr1 h

zs
2 , v = vzr1 v

z′s
2 ). Then, if we denote g2 = gβ2

1 and g3 = gβ3

1 ,
and h1 = gρ1

1 and h2 = gρ2

1 , but also v1 = gδ11 and v2 = gδ21 , and ∆ = logg1
(W ′/W ):

H = gηzr1 gβ2θzs
1 gβ3κzt

1 (W ′/W )λ(gρ1zr+ρ2zs
1 )λ(vzr1 v

z′s
2 )µ,

logg1
H = ηzr + β2θzs + β3κzt + λ(ρ1zr + ρ2zs) + µ(δ1z+δ2z

′
s) + λ∆.

The information leaked by the projected key is logg1
hp1 = η + β3κ + ρ1λ + δ1µ and logg1

hp2 = β2θ +
β3κ+ ρ2λ+ δ2µ, which leads to the matrix 1 0 β3 ρ1 δ1

0 β2 β3 ρ2 δ2
zr β2zs β3zt ∆ + ρ1zr + ρ2zs δ1zr + δ2z

′
s


One remarks that if zt 6= zr + zs mod p, then the three rows are not linearly dependent even considering
the 3 first components only, and then H is unpredictable. Hence, we can assume that zt = zr+zs mod p.
The third row must thus be the first multiplied by zr plus the second multiplied by zs: ρ2zs = ∆ +
ρ2zs mod p and zs = z′s mod p, which implies z′s = s and ∆ = 0, otherwise, H remains unpredictable.

As a consequence, if C is not a correct encryption of W , H is perfectly unpredictable in G:

{(hp, H), hk = (η, θ, κ, λ, µ)
$← Z5

p, hp = (hp1 = gη1g
κ
3h

λ
1v
µ
1 , hp2 = gθ2g

κ
3h

λ
2v
µ
2 ), H ← Hash(hk,W, C)}

≈s {(hp, H), hk = (η, θ, κ, λ, µ)
$← Z5

p, hp = (hp1 = gη1g
κ
3h

λ
1v
µ
1 , hp2 = gθ2g

κ
3h

λ
2v
µ
2 ), H

$← G}.

Pseudo-Randomness: we have just shown that if C is not a correct encryption of W , then H is
statistically unpredictable. Let us be given a triple (g1, g2, g3) together with another triple ~u = (u1 =
ga1 , u2 = gb2, u3 = gc3). We choose random exponents (x1, x2, x3, y1, y2, y3, z1, z2, z3), and for i = 1, 2,
we set ci = gxi

i g
x3
3 , di = gyii g

y3

3 , and hi = gzii g
z3
3 . We generate C = (~u, e = W × uz11 u

z2
2 u

z3
3 , v =

ux1+ξy1

1 ux2+ξy2

2 ux3+ξy3

3 ). If c = a + b mod p (i.e. , ~u is a linear tuple in basis ~g), then C is a valid
encryption of W , otherwise this is not, and we can apply the smoothness property:

AdvprΠ(t) ≤ Advsmooth
Π + Advdlinp,G,g(t) ≤ Advdlinp,G,g(t).

�

5.3.2 With our Equivocable Commitment à la Lindell

In Section 2.6.6, page 52, we upgraded the previous commitment to allow some equivocability, and we
can also compute a Smooth Projective Hash Function to again supersede the Decommit process.
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To allow an implicit verification with SPHF, one omits to send ~m and z, but makes an implicit proof
of their existence. Therefore, ~m cannot be committed/verified in C′′, which has an impact on the binding
property: C and C′′ are not binded to a specific ~m, even in a computational way.

However, as said for the standard decommit, if C′′ contains a ciphertext C′ of ~N 6= (1G)n, the

actual committed value will depend on ~ε: ~M ′ = ~M ~N~ε has its i-component, where Ni 6= 1G, uniformly
distributed in G when ε is uniformly distributed in Z∗p. In addition, if ~ε

$← (Z∗p)n, all these i-component
where Ni 6= 1G are randomly and independently distributed in G. Then, if the committed value has to
satisfy a specific relation, with very few solutions, ~m′ such that ~M ′ = G(~m′) will unlikely satisfy it.
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In the previous chapter, we presented an overview of easily manageable languages with our implicit
proofs framework. We are now going to show how to apply this approach to different protocols and show
how to increase their existing security while improving their efficiency without breaking the pre-existing
round-optimality.

First we are going to instantiate Oblivious Signature-Based Envelope while providing some extra
protection to the user without breaking the round-optimality.

Then, we are going to re-instantiate our blind signatures swapping the Groth-Sahai proofs by a
Smooth Projective Hash Function on an extended language. This emphasizes the contribution of our
result, because with no other alteration we manage to improve the efficiency.

We are then going to focus on advanced protocols revolving around Authenticated Key Exchange,
and extend the notion of PAKE to LAKE. This notion supersedes the existing approach for PAKE: to
establish a common shared key the users do not require a shared password anymore but instead they
need to possess a word and a witness that this word belongs to the language expected by the other user.

6.1 Oblivious Signature-Based Envelope

Oblivious Signature-Based Envelope (OSBE) were introduced in [LDB03]. It can be viewed as an efficient
way to ease the asymmetrical aspect of several authentication protocols. Alice is a member of an
organization and possesses a certificate produced by an authority attesting she is in this organization.
Bob wants to send a private message P to members of this organization. However due to the sensitive
nature of the organization, Alice does not want to give Bob neither her certificate nor a proof she belongs
to the organization. OSBE lets Bob sends an obfuscated version of this message P to Alice, in such a
way that Alice will be able to find P if and only if Alice is in the required organization. In the process,

102



6.1 Oblivious Signature-Based Envelope 103

Bob cannot decide whether Alice does really belong to the organization. They are part of a growing
field of protocols, around automated trust negotiation, which also include Secret Handshakes [BDS+03],
Password-based Authenticated Key-Exchange [BM93,BPR00], and Hidden Credentials [BHS04]. Those
schemes are all closely related, [CJT04] showed that if you tweak two OSBE, you can produce any of the
other AKE.

6.1.1 Definition and Security Properties

In this section, we are going to precise the security notions of an OSBE scheme. We strengthen the usual
security requirements, in order to prevent some interference by the authority, where before it was not
considered a liability when the authority can find the message sent to the user.

We now define an OSBE protocol, where a sender S wants to send a private message P ∈ {0, 1}` to
a recipient R in possession of a certificate/signature on a message M .

Oblivious Signature-Based Envelope
p An OSBE scheme is defined by four algorithms (OSBESetup,OSBEKeyGen,OSBESign,OSBEVerif), and
one interactive protocol OSBEProtocol〈S,R〉:

• OSBESetup(1K), where K is the security parameter, generates the global parameters param;

• OSBEKeyGen(param) generates the keys (vk, sk) of the certification authority;

• OSBESign(sk,m) produces a signature σ on the input message m, under the signing key sk;

• OSBEVerif(vk,m, σ) checks whether σ is a valid signature on m, w.r.t. the public key vk; it outputs
1 if the signature is valid, and 0 otherwise.

• OSBEProtocol〈S(vk,M, P ),R(vk,M, σ)〉 between the sender S with the private message P , and
the recipient R with a certificate σ. If σ is a valid signature under vk on the common message M ,
then R receives P , otherwise it receives nothing. In any case, S does not learn anything.

y

Such an OSBE scheme should be (the three last properties are additional —or stronger— security
properties from the original definitions [LDB03]):

• correct : the protocol actually allows R to learn P , whenever σ is a valid signature on M under vk;

• oblivious: the sender should not be able to distinguish whether R uses a valid signature σ on M
under vk as input. More precisely, if R0 knows and uses a valid signature σ and R1 does not use
such a valid signature, the sender cannot distinguish an interaction with R0 from an interaction
with R1;

• (weakly) semantically secure: the recipient learns nothing about S input P if it does not use a valid
signature σ on M under vk as input. More precisely, if S0 owns P0 and S1 owns P1, the recipient
that does not use a valid signature cannot distinguish an interaction with S0 from an interaction
with S1;

• semantically secure (denoted sem): the above indistinguishability should hold even if the receiver
has seen several interactions 〈S(vk,M, P ),R(vk,M, σ)〉 with valid signatures, and the same sender’s
input P ;

• oblivious with respect to the authority (denoted oblA): the authority (owner of the signing key
sk), playing as the sender or just eavesdropping, is unable to distinguish whether R used a valid
signature σ on M under vk as input. This notion supersedes the above oblivious property, since
this is basically oblivious w.r.t. the authority, without any restriction.

• semantically secure w.r.t. the authority (denoted sem∗): after the interaction, the authority (owner
of the signing key sk) learns nothing about P .

We insist that the oblivious with respect to the authority property (oblA) is stronger than the oblivious
property, hence we will consider the former only. However, the semantic security w.r.t. the authority
(sem∗) is independent from the basic semantic security (sem) since in the latter the adversary interacts
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ExpoblA−bOSBE,A(K) [Oblivious w.r.t. the authority]

1. param← OSBESetup(1K)
2. vk← A(INIT : param)
3. (M,σ)← A(FIND : Send(vk, ·, ·), Rec∗(vk, ·, ·, 0), Exec∗(vk, ·, ·, ·))
4. OSBEProtocol〈A, Rec∗(vk,M, σ, b)〉
5. b′ ← A(GUESS : Send(vk, ·, ·), Rec∗(vk, ·, ·, 0), Exec∗(vk, ·, ·, ·))
6. RETURN b′

Expsem
∗−b

OSBE,A(K) [Semantic security w.r.t. the authority]

1. param← OSBESetup(1K)
2. vk← A(INIT : param)
3. (M,σ, P0, P1)← A(FIND : Send(vk, ·, ·), Rec∗(vk, ·, ·, 0), Exec∗(vk, ·, ·, ·))
4. transcript← OSBEProtocol〈Send(vk,M, Pb), Rec

∗(vk,M, σ, 0〉
5. b′ ← A(GUESS : transcript, Send(vk, ·, ·), Rec∗(vk, ·, ·, 0), Exec∗(vk, ·, ·, ·))
6. RETURN b′

Expsem−bOSBE,A(K) [Semantic Security]

1. param← OSBESetup(1K)
2. (vk, sk)← OSBEKeyGen(param)
3. (M,P0, P1)← A(FIND : vk, Sign∗(vk, ·), Send(vk, ·, ·), Rec(vk, ·, 0), Exec(vk, ·, ·))
4. OSBEProtocol〈Send(vk,M, Pb),A〉
5. b′ ← A(GUESS : Sign(vk, ·), Send(vk, ·, ·), Rec(vk, ·, 0), Exec(vk, ·, ·))
6. IF M ∈ SM RETURN 0 ELSE RETURN b′

Figure 6.1: Security Games for OSBE

with the sender whereas in the former the adversary (who generated the signing keys) has only passive
access to a challenge transcript.

These security notions can be formalized by the security games presented on Figure 6.1, page 104,
where the adversary keeps some internal state between the various calls INIT, FIND and GUESS. They
make use of the oracles described below, and the advantages of the adversary are, for all the security
notions,

Adv∗OSBE,A(K) = Pr[Exp∗−1
OSBE,A(K) = 1]− Pr[Exp∗−0

OSBE,A(K) = 1]

Adv∗OSBE(K, t) = max
A≤t

Adv∗OSBE,A(K).

• Sign(vk,m): This oracle outputs a valid signature on m under the signing key sk associated to vk
(where the pair (vk, sk) has been outputted by the OSBEKeyGen algorithm);

• Sign∗(vk,m): This oracle first queries Sign(vk,m). It additionally stores the query m to the list
SM;

• Send(vk,m, P ): This oracle emulates the sender with private input P , and thus may consist of
multiple interactions;

• Rec(vk,m, b): This oracle emulates the recipient either with a valid signature σ on m under the
verification key vk (obtained from the signing oracle Sign) if b = 0 (as the above R0), or with a
random string if b = 1 (as the above R1). This oracle is available when the signing key has been
generated by OSBEKeyGen only;

• Rec∗(vk,m, σ, b): This oracle does as above, with a valid signature σ provided by the adversary. If
b = 0, it emulates the recipient playing with σ; if b = 1, it emulates the recipient playing with a
random string;

• Exec(vk,m, P ): This oracle outputs the transcript of an honest execution between a sender with
private input P and the recipient with a valid signature σ on m under the verification key vk
(obtained from the signing oracle Sign). It basically activates the Send(vk,m, P ) and Rec(vk,m, 0)
oracles.

• Exec∗(vk,m, σ, P ): This oracle outputs the transcript of an honest execution between a sender with
private input P and the recipient with a valid signature σ (provided by the adversary). It basically
activates the Send(vk,m, P ) and Rec∗(vk,m, σ, 0) oracles.

Remark The OSBE schemes proposed in [LDB03] do not satisfy the semantic security w.r.t. the au-
thority. This is obvious for the generic construction based on identity-based encryption which consists
in only one flow of communication (since a scheme that achieves the strong security notions requires at
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least two flows). This is also true (to a lesser extent) for the RSA-based construction: for any third
party, the semantic security relies (in the random oracle model) on the CDH assumption in a 2048-bit
RSA group; but for the authority, it can be broken by solving two 1024-bit discrete logarithm problems.
This task is much simpler in particular if the authority generates the RSA modulus N = pq dishonestly
(e.g. with p− 1 and q − 1 smooth). In order to make the scheme secure in our strong model, one needs
(at least) to double the size of the RSA modulus and to make sure that the authority has selected and
correctly employed a truly random seed in the generation of the RSA key pair [JG02].

6.1.2 High Level Instantiation

In this section, we present a high-level instantiation of OSBE with our usual primitives as black boxes.
We assume we have an extractable commitment scheme C, a signature scheme S and a SPHF system

onto a set G. We additionally use a key derivation function KDF to derive a pseudo-random bit-string
K ∈ {0, 1}` from a pseudo-random element v in G. One can use the Leftover-Hash Lemma [HILL99],
with a random seed defined in param during the global setup, to extract the entropy from v, then
followed by a pseudo-random generator to get a long enough bit-string. Many uses of the same seed in
the Leftover-Hash-Lemma just leads to a security loss linear in the number of extractions. We describe
an oblivious signature-based envelope system OSBE, to send a private message P ∈ {0, 1}`:

• OSBESetup(1K), where K is the security parameter:

– it first generates the global parameters for the signature scheme, the commitment scheme ,
and the SPHF system (using their respective Setup);

– it then generates the public commitment key ck (while the extraction key will not be used);

The output param consists of all the individual param and the commitment key ck;

• OSBEKeyGen(param) runs KeyGenS(param) to generate a pair (vk, sk) of verification-signing keys;

• The OSBESign and OSBEVerif algorithms are exactly Sign and Verif from the signature scheme;

• OSBEProtocol〈S(vk,M, P ),R(vk,M, σ)〉: In the following, L = L(vk,M) will describe the language
of the ciphertexts under the above commitment key ck of a valid signature of the input message
M under the input verification key vk (hence vk and M as inputs, while param contains ck).

– R generates and sends c = Commit(ck, σ; r);

– S computes hk = HashKG(L, param), hp = ProjKG(hk, (L, param), c), v = Hash(hk, (L, param), c),
and Q = P ⊕ KDF(v); S sends hp, Q to R;

– R computes v′ = ProjHash(hp, (L, param), c, r) and P ′ = Q⊕ KDF(v′).

ProjHash(hp, (WLin(ck, vk,M), C, w) = v′

P ′ = Q⊕ v′

Q

σ

hk = HashKG(L, param)

v = Hash(hk, (L, param), c)

P

hp = ProjKG(hk, (L, param), c)

ck, σ; r

Q = P ⊕
v

Commit

σ(M
)

c

Figure 6.2: A One-Round OSBE based on Smooth Projective Hash Function
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Security Properties

Theorem 6.1.1 (Correct) OSBE is sound.

Proof: Under the correctness of the SPHF system, v′ = v, and thus P ′ = (P ⊕KDF(v))⊕KDF(v′) = P .
�

Theorem 6.1.2 (Oblivious w.r.t. the Authority) OSBE is oblivious w.r.t. the authority if the
commitment scheme C is computationally hiding ( semantically secure):

AdvoblAOSBE(K, t) ≤ AdvindC (K, t′) with t′ ≈ t.

Proof: Let us assume A is an adversary against the oblivious w.r.t. the authority property of our scheme:
The malicious adversary A is able to tell the difference between an interaction with R0 (who knows and
uses a valid signature) and R1 (who does not use a valid signature), with advantage ε.

We now build an adversary B against the semantic security of the commitment scheme C:

• B is first given the parameters for C and a commitment key ck;

• B emulates OSBESetup: it runs SSetup and SPHFSetup by itself. For the commitment scheme
C, the parameters and the key have already been provided by the challenger of the commitment
security game;

• A provides the verification key vk;

• B has to simulate all the oracles:

– Send(vk,M, P ), for a message M and a private input P : upon receiving c, one computes
hk = HashKG(L, param), hp = ProjKG(hk, (L, param), c), v = Hash(hk, (L, param), c), and
Q = P ⊕ KDF(v). One sends back (hp, Q);

– Rec∗(vk,M, σ, 0), for a message M and a valid signature σ: B outputs c = Commit(ck, σ; r);

– Exec∗(vk,M, σ, P ): one first runs Rec(vk,M, σ, 0) to generate c and provide it to Send(vk,M, P ),
to generate (hp, Q).

• At some point, A outputs a messageM and a valid signature σ, and B has to simulate Rec∗(vk,M, σ, b):
B sets σ0 ← σ and sets σ1 as a random string. It sends (σ0, σ1) to the challenger of the semantic
security of the commitment scheme and gets back c, a commitment of σβ , for a random unknown
bit β. It outputs c;

• B provides again access to the above oracles, and A outputs a bit b′, that B forwards as its guess
β′ for the β involved in the semantic security game for C.

Note that the above simulation perfectly emulates ExpoblA−βOSBE,A(K) (since basically b is β, and b′ is β′):

ε = AdvoblAOSBE,A(K) = Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0] = AdvindC,B(k) ≤ AdvindC (K, t).

�

Theorem 6.1.3 (Semantically Secure) OSBE is semantically secure if the signature is unforge-
able, the SPHF is smooth and the commitment scheme is semantically secure (and under the pseudo-
randomness of the KDF):

AdvsemOSBE(K, t)≤qU AdvindC (K, t′) + 2 SucceufS (k, qS , t
′′) + 2Advsmooth

SPHF (K)with t′, t′′≈ t.

In the above formula, qU denotes the number of interactions the adversary has with the sender, and qS
the number of signing queries the adversary asked.

Proof: Let us assume A is an adversary against the semantic security of our scheme: The malicious
adversary A is able to tell the difference between an interaction with S0 (who owns P0) and S1 (who
owns P1), with advantage ε. We start from this initial security game, and make slight modifications to
bound ε.
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Game G0: Let us emulate this security game:

• B emulates the initialization of the system: it runs OSBESetup by itself, and then OSBEKeyGen to
generate (vk, sk);

• B has to simulate all the oracles:

– Sign(vk,M) and Sign∗(vk,M): it runs the corresponding algorithm by itself;

– Send(vk,M, P ), for a message M and a private input P : upon receiving c, one computes
hk = HashKG(L, param), hp = ProjKG(hk, (L, param), c), v = Hash(hk, (L, param), c), and
Q = P ⊕ KDF(v). One sends back (hp, Q);

– Rec(vk,M, 0), for a message M : B asks for a valid signature σ on M , computes and outputs
c = Commit(ck, σ; r);

– Exec(vk,M, P ): one simply first runs Rec(vk,M, 0) to generate c, and provide it to Send(vk,M, P ),
to generate (hp, Q).

• At some point, A outputs a message M and two inputs (P0, P1) to distinguish the sender, and B
call back the above Send(vk,M, Pb) simulation to interact with A;

• B provides again access to the above oracles, and A outputs a bit b′.

In this game, A has an advantage ε in guessing b:

ε = Pr
0

[b′ = 1|b = 1]− Pr
G0

[b′ = 1|b = 0] = 2× Pr
G0

[b′ = b]− 1.

Game G1
β: This game involves the semantic security of the commitment scheme: B is already provided

the parameters and the commitment key ck by the challenger of the semantic security of the commitment
scheme, hence the initialization is slightly modified. In addition, B sets the bit b = β, and modifies the
Rec oracle simulation:

• Rec(vk,M, 0), for a message M : B asks for a valid signature σ0 on M , and sets σ1 as a random
string, computes and outputs c = Commit(ck, σb; r).

Since B knows b, it finally outputs β′ = (b′ = b).
Note that G0

1 is exactly G0, and the distance between G0
1 and G1

1 relies on the Left-or-Right security
of the commitment scheme, which can be shown equivalent to the semantic security, with a lost linear
in the number of commitment queries, which is actually the number qU of interactions with a user (the
sender in this case), due to the hybrid argument [BDJR97]:

qU × AdvindE (k) ≥ Pr[β′ = 1|β = 0]− Pr[β′ = 1|β = 1]

= Pr[b′ = b|β = 0]− Pr[b′ = b|β = 1]

= (2× Pr
G0

1

[b′ = b]− 1)− (2× Pr
G1

1

[b′ = b]− 1)

As a consequence: ε ≤ qU × AdvindC (K) + (2× PrG1
1
[b′ = b]− 1).

Game G2: This game involves the unforgeability of the signature scheme: B is already provided the
parameters and the verification vk for the signature scheme, together with access to the signing oracle
(note that all the signing queries Sign∗ asked by the adversary in the FIND stage, i.e. , before the
challenge interaction with Send(vk,M, Pb), are stored in SM). The simulator B generates itself all the
other parameters and keys, an namely the commitment key ck, together with the associated extraction
key ek. For the Rec oracle simulation, B keeps the random version (as in G1

1). In the challenge interaction
with Send(vk,M, Pb), one stops the simulation and makes the adversary win if it uses a valid signature
on a message M 6∈ SM:

• Send(vk,M, Pb), during the challenge interaction: upon receiving c, if M 6∈ SM, it first extracts c
to get the input signature σ. If σ is a valid signature, one stops the game, sets b′ = b and outputs
b′. If the signature is in not valid, the simulation remains unchanged;

• Rec(vk,M, 0), for a messageM : B sets σ as a random string, computes and outputs c = Commit(ck, σ; r).
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Because of the abort in the case of a valid signature on a new message, we know that the adversary
cannot use such a valid signature in the challenge. So, since M should not be in SM, the signature
will be invalid. Actually, the unique difference from the previous game G1

1 is the abort in case of valid
signature on a new message in the challenge phase, which probability is bounded by SucceufS (K, qS). Using
Shoup’s Lemma [Sho02]:

Pr
G1

1

[b′ = b]− Pr
G2

[b′ = b] ≤ SucceufS (K, qS).

As a consequence: ε ≤ qU × AdvindC (K) + 2× SucceufS (K, qS) + (2× PrG2
[b′ = b]− 1).

Game G3: The last game involves the smoothness of the SPHF: The unique difference is in the com-
putation of v in Send simulation, in the challenge phase only: B chooses a random v ∈ G. Due to the
statistical randomness of v in the previous game, in case the signature is not valid (a word that is not in
the language), this game is statistically indistinguishable from the previous one:

Pr
G2

[b′ = b]− Pr
G3

[b′ = b] ≤ Advsmooth
SPHF (K).

Since Pb is now masked by a truly random value, no information leaks on b: PrG3
[b′ = b] = 1/2. �

Theorem 6.1.4 OSBE is semantically secure w.r.t. the authority if the SPHF is pseudo-random
(and under the pseudo-randomness of the KDF):

Advsem
∗

OSBE(K, t) ≤ 2× AdvprSPHF(K, t).

Proof: Let us assume A is an adversary against the semantic security w.r.t. the authority: The malicious
adversary A is able to tell the difference between an eavesdropped interaction with S0 (who owns P0)
and S1 (who owns P1), with advantage ε. We start from this initial security game, and make slight
modifications to bound ε.

Game G0: Let us emulate this security game:

• B emulates the initialization of the system: it runs OSBESetup by itself;

• A provides the verification key vk;

• B has to simulate all the oracles:

– Send(vk,M, P ), for a message M and a private input P : upon receiving c, one computes
hk = HashKG(L, param), hp = ProjKG(hk, (L, param), c), v = Hash(hk, (L, param), c), and
Q = P ⊕ KDF(v). One sends back (hp, Q);

– Rec∗(vk,M, σ, 0), for a message M and a valid signature σ: B outputs c = Commit(ck, σ; r);

– Exec∗(vk,M, σ, P ): one first runs Rec(vk,M, σ, 0) to generate c, that is provided to Send(vk,M, P ),
to generate (hp, Q).

• At some point, A outputs a message M with a valid signature σ, and two inputs (P0, P1) to
distinguish the sender, and B call back the above Send(vk,M, Pb) and Rec∗(vk,M, σ, 0) simulations
to interact together and output the transcript (c; hp, Q);

• B provides again access to the above oracles, and A outputs a bit b′.

In this game, A has an advantage ε in guessing b:

ε = Pr
G0

[b′ = 1|b = 1]− Pr
G0

[b′ = 1|b = 0] = 2× Pr
G0

[b′ = b]− 1.

Game G1: This game involves the pseudo-randomness of the SPHF: The unique difference is in the
computation of v in Send simulation of the eavesdropped interaction, and so for the transcript: B chooses
a random v ∈ G and computes Q = Pb ⊕ KDF(v). Due to the pseudo-randomness of v in the previous
game, since A does not know the random coins r used to commit σ, this game is computationally
indistinguishable from the previous one.

Pr
G1

[b′ = b]− Pr
G0

[b′ = b] ≤ AdvprSPHF(K, t).

Since Pb is now masked by a truly random value v, no information leaks on b: PrG1
[b′ = b] = 1/2.

�
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6.1.3 Concrete Instantiation

Our first construction combines the linear encryption scheme [BBS04], the Waters signature scheme [Wat05]
and a SPHF on linear ciphertexts [CS02, Sha07] (See section 5.2, page 97, for an explanation of how to
adapt a SPHF on linear ciphertext to a SPHF on a valid signature in a linear ciphertext). The over-
all security then relies on the DLin assumption, a quite standard assumption in the standard model.
Its efficiency is of the same order of magnitude than the construction based on identity-based encryp-
tion [LDB03] (that only achieves weaker security notions) and better than the RSA-based scheme which
provides similar security guarantees (in the random oracle model).

The linear encryption is once again viewed as a commitment scheme, as the decryption key is never
to be used except maybe in simulation during security proofs. To stress this point, we will use ck to
design the encryption key.

We now define our OSBE protocol, where a sender S wants to send a private message P ∈ {0, 1}` to
a recipient R in possession of a Waters signature on a message M . We will use a smooth projective hash
function on the language of valid commitment of Waters Signature as explained in section 5.2, page 97

• OSBESetup(1K), where K is the security parameter, defines a bilinear environment (p,G,GT , e, g),

the public parameters h
$← G, a commitment key ck = (Y1 = gy1 , Y2 = gy2), where (y1, y2)

$← Z2
p,

and ~u = (u0, . . . , uk)
$← Gk+1 for the Waters signature. All these elements constitute the string

param;

• OSBEKeyGen(param), the authority generates a pair of keys (vk = gz, sk = hz) for a random scalar

z
$← Zp;

• OSBESign(sk,M) produces a signature σ = (hzF(M)s, gs);

• OSBEVerif(vk,M, σ) checks if e(σ1, g) = e(σ2,F(M)) · e(h, vk).

• OSBEProtocol〈S(vk,M, P ),R(vk,M, σ)〉 runs as follows:

– R chooses random r1, r2
$← Zp and sends a linear encryption of σ:

C = (c1 = ckr11 , c2 = ckr22 , c3 = gr1+r2 · σ1, σ2)

– S chooses random x1, x2, x3
$← Z3

p and computes:

∗ HashKG(WLin(ck, vk,M)) = hk = (x1, x2, x3);

∗ Hash(hk;WLin(ck, vk,M), C) = v =
e(c1, g)x1e(c2, g)x2(e(c3, g)/(e(h, vk)e(F(M), σ2)))x3 ;

∗ ProjKG(hk;WLin(ck, vk,M), C) = hp = (ckx1
1 gx3 , ckx2

2 gx3).

– S then sends (hp, Q = P ⊕ KDF(v)) to R;

– R computes v′ = e(hpr11 hpr22 , g) and P ′ = Q⊕ KDF(v′).

As always, we have also proposed an asymmetric instantiation with an ElGamal encryption in G1,
and relying on an asymmetric Waters so CDH+. In should be noted that in this case, we would only rely
on XDH, as we do not need to commit anything in G2.

Security and Efficiency

We now provide a security analysis of this scheme. This instantiation differs, from the high-level in-
stantiation presented before, in the ciphertext C of the signature σ = (σ1, σ2). The second half of the
signature indeed remains in clear. It thus does not guarantee the semantic security on the signature
used in the ciphertext. However, granted Waters signature randomizability, one can re-randomize the
signature each time, and thus provide a totally new σ2: it does not leak any information about the
original signature. The first part of the ciphertext (c1, c2, c3) does not leak any additional information
under the DLin assumption. As a consequence, the global ciphertext guarantees the semantic security of
the original signature if a new re-randomized signature is encrypted each time. We can now apply the
high-level construction security, and all the assumptions hold under the DLin one:

Theorem 6.1.5 Our OSBE scheme is secure (i.e. oblivious w.r.t. the authority, semantically secure, and
semantically secure w.r.t. the authority) under the DLin assumption (and the pseudo-random generator
in the KDF).
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Our proposed scheme needs one communication for R and one for S, so it is round-optimal. Commu-
nication also consists of few elements, R sends 4 group elements, and S answers with 2 group elements
only and an `-bit string for the masked P ∈ {0, 1}`. As explained in Remark 6.1.1, page 104, this has
to be compared with the RSA-based scheme from [LDB03] which requires 2 elements in RSA groups
(with double-length modulus). For a 128-bit security level, using standard Type-I bilinear groups imple-
mentation, we obtain a 62.5% improvement1 in communication complexity over the RSA-based scheme
proposed in the original paper [LDB03].

While reducing the communication cost of the scheme, we have improved its security and it now
fits the proposed applications. In [LDB03], such schemes were proposed for applications where someone
wants to transmit a confidential information to an agent belonging to a specific agency. However the
agent does not want to give away his signature. As they do not consider eavesdropping and replay in their
semantic security nothing prevents an adversary to replay a part of a previous interaction to impersonate
a CIA agent (to recall their example). In practice, an additional secure communication channel, such as
with SSL, was required in their security model, hence increasing the communication cost: our protocol
is secure by itself.

6.2 Round-Optimal Blind Signature Revamped

We now present a new way to obtain a blind signature scheme in the standard model under classical
assumptions with a common-reference string. This is an improvement over [BFPV11], presented in
chapter 4, page 70. We are going to use the same building blocks as before, so linear encryption, Waters
signatures and a Smooth Projective Hash Function on linear ciphertexts. More elaborated languages
will be required, but just conjunctions and disjunctions of classical languages, as done in [ACP09] (see
section 2.2.4, page 24, and section 5.1.2, page 95), hence the efficient construction. Once again we will
use, ck to denote the public key of the encryption scheme, as we won’t use the decryption key in the real
world. Our blind signature scheme is defined by:

• BSSetup(1K), where K is the security parameter, generates a pairing-friendly system (p,G,GT , e, g)
and an extractable commitment key ck = (u, v, g) ∈ G3. It also chooses at random h ∈ G
and generators ~u = (ui)i∈J1,`K ∈ G` for the Waters function. It outputs the global parameters
param = (p,G,GT , e, g, ck, h, ~u);

• BSKeyGen(param) picks at random a secret key sk = x and computes the verification key vk = gx;

• BSProtocol〈S(sk),U(vk,m)〉 runs as follows, where U wants to get a signature on M

– U computes the bit-per-bit encryption of M by encrypting each uMi
i in bi, ∀i ∈ J1, `K, bi =

Commit(ck, uMi
i ; (ri,1, ri,2)) = (uri,1 , vri,2 , gri,1+ri,2uMi

i ) where (ri,1, ri,2)
$← Z2

p. Then writing

r1 =
∑
ri,1 and r2 =

∑
ri,2, he computes the encryption c of vkr1+r2 for two random scalars

s1, s2
$← Zp with Commit(ck, vkr1+r2 ; s1, s2) = (us1 , vs2 , gs1+s2vkr1+r2). U then sends (c, (bi));

– On input of these ciphertexts, the algorithm S computes the corresponding SPHF, considering
the language L of valid ciphertexts. This is a conjunction of several languages:

1. One checking that each bi encrypts a bit in basis ui: in BLin(ck, ui);

2. One considering (d1, d2, c1, c2, c3), that checks if (c1, c2, c3) encrypts an element d3 such
that (d1, d2, d3) is a linear tuple in basis (u, v, vk): in ELin(ck, vk), where d1 =

∏
i bi,1 and

d2 =
∏
i bi,2.

– S computes the corresponding Hash-value v, extracts K = KDF(v) ∈ Zp, generates the blinded
signature (σ′′1 = hxδs, σ′2 = gs), where δ = u0

∏
i bi,3 = F(M)gr1+r2 , and sends (hp, Q =

σ′′1 × gK , σ′2);

– Upon receiving (hp, Q, σ′2), using its witnesses and hp, U computes the ProjHash-value v′,
extracts K ′ = KDF(v′) and unmasks σ′′1 = Q × g−K′ . Thanks to the knowledge of r1 and
r2, it can compute σ′1 = σ′′1 × (σ′2)−r1−r2 . Note that if v′ = v, then σ′1 = hxF(M)s, which
together with σ′2 = gs is a valid Waters signature on M . It can thereafter re-randomize the
final signature σ = (σ′1 · F(M)s

′
, σ′2 · gs

′
).

• BSVerif(vk,M, σ), checks whether e(σ1, g) = e(h, vk) · e(F(M), σ2).

1The improvement is even more important for the asymmetric scheme since, using standard Type-II or Type-III bilinear
groups, the communication complexity is only 3/16-th of the one of the RSA-based scheme.
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Our idea is to remove any kind of proof of knowledge in the protocol, which was the main concern in
section 4.2.2, page 77, and so instead we use the SPHF to assure the signer that the user will not be able
to exploit the signature on a different message than the one it had committed to in the ciphertext when
it asked for its signature. This way, we obtain a protocol where the user first sends 3 `+6 group elements
for the ciphertext, and receives back 5 ` + 4 elements for the projection key and 2 group elements for
the blinded signature. So 8 `+ 12 group elements are used in total. This has to be compared to 9 `+ 24
before. We both reduce the linear and the constant parts in the number of group elements involved while
relying on the same hypotheses. And the final result is still a standard Waters signature.

In the table below we give a compared evaluation costs between this construction based on smooth
projective hash functions, and our previous one relying on Groth-Sahai methodology.

Symmetric Pairing G
Groth-Sahai based 9 k + 24

with SPHF 8 k + 12

Asymmetric Pairing G1 G2

Groth-Sahai based 6 k + 9 6 k + 7
with SPHF 5 k + 6 1
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Remark In [GRS+11], Garg el al. proposed the first round-optimal blind signature scheme in the
standard model, without CRS. In order to remove the CRS, their scheme makes use of ZAPs [DN07],
a two-round public-coin witness-indistinguishable proof system, and is quite inefficient. Moreover, its
security relies on a stronger assumption (namely, sub-exponential hardness of one-to-one one-way func-
tions). A natural idea is to replace the CRS in our scheme with Groth-Ostrovsky-Sahai ZAP [GOS06a]
based on the DLin assumption. This change would only double the communication complexity, but we
do not know how to prove the security of the resulting scheme2. It remains a tantalizing open problem
to design an efficient round-optimal blind signature in the standard model without CRS.

6.3 Language Authenticated Key Exchange

In Section 5.3, page 99 we have shown how to build a Smooth Projective Hash Function on variant of
Linear Cramer-Shoup, in other words, we have presented a protocol, that lets a user commit to word in
a language, and then show that the word indeed belonged to a language.

We are going to use this primitive as the primary building block to build our LAKE protocols.
Informally, this primitive allows two users to agree on a common key, if each possess a word and a
witness that this word belongs to the language expected by the other user. As we will explain, a PAKE,
where both users have to possess the same password is a simple case of LAKE.

This new primitive encompasses the previous notions of PAKE and Secret Handshakes. It is closely
related to CAKE and we call it LAKE, for Language-Authenticated Key-Exchange, since parties establish
a common key if and only if they hold credentials that belong to specific (and possibly independent)
languages that the players do not need to agree on prior to the protocol execution. The definition of
the primitive is more practice-oriented than the definition of CAKE from [CCGS10] but the two notions
are very similar3. In particular, the new primitive enables privacy-preserving authentication and key

2Indeed, opening the commitment scheme in the ZAP and forging a signature relies on the same computational assump-
tion, which makes it impossible to apply the complexity leveraging argument from [GRS+11].

3Actually we believe that any interesting AKE primitive can be formalized in either way.
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exchange protocols by allowing two members of the same group to secretly and privately authenticate
to each other without revealing this group beforehand.

In order to define the security of this primitive, we use the UC framework and an appropriate definition
for languages that permits to dissociate the public part of the policy, the private common information
the users want to check and the (possibly independent) secret values each user owns that assess the
membership to the languages. We provide an ideal functionality for LAKE and give efficient realizations
of the new primitive (for a large family of languages) secure under classical mild assumptions, in the
standard model (with a common reference string – CRS), with static corruptions.

We significantly improve the efficiency of several CAKE protocols [CCGS10] for specific languages
and we enlarge the set of languages for which we can construct practical schemes. Notably, we obtain a
very practical realization of Secret Handshakes that provides very strong security properties.

6.3.1 Definitions

The main goal of an Authenticated Key Exchange (AKE) protocol is to enable two parties to establish a
shared, cryptographically strong key over an insecure network under the complete control of an adversary.
AKE is one of the most widely used and fundamental cryptographic primitives. In order for AKE to be
possible, the parties must have authentication means, e.g. (public or secret) cryptographic keys, short
(i.e., low-entropy) secret keys or credentials that satisfy a (public or secret) policy.

Password-Authenticated Key Exchange (PAKE) was formalized by Bellovin and Merritt [BM92] and
followed by many proposals based on different cryptographic assumptions (see [ACP09, CCGS10] and
references therein). It allows users to generate a strong cryptographic key based on a shared “human-
memorable” (i.e. low-entropy) password without requiring a public-key infrastructure. In this setting,
an adversary controlling all communication in the network and able to corrupt participants at any time
should not be able to mount an off-line dictionary attack.

The concept of Secret Handshakes has been introduced in 2003 by Balfanz, Durfee, Shankar, Smetters,
Staddon and Wong [BDS+03] (see also [JL09, AKB07]). It allows two members of the same group to
identify each other secretly, in the sense that each party reveals his affiliation to the other only if they
are members of the same group. At the end of the protocol, the parties can set up an ephemeral session
key for securing further communication between them and an outsider is unable to determine if the
handshake succeeded.

More recently, Credential-Authenticated Key Exchange (CAKE) were presented by Camenisch, Casati,
Groß and Shoup [CCGS10]. In this primitive, a common key is established if and only if a specific relation
is satisfied between credentials hold by the two players.

The LAKE primitive includes PAKE and Secret Handshakes: in the former case, the credentials are
just passwords, and the policy says that the two passwords must be equal, and in the latter case, owning
a credential serves as evidence of membership in a group.

6.3.2 The Ideal Functionality

We tweak the Password-Authenticated Key Exchange functionality Fpake (first provided in [CHK+05])
to handle more complex languages: the players now agree on a common secret key if and only if they
own words that lie in the languages the partners have in mind. Using notations from Section 5, page 93
this can be said more precisely: after an agreement on pub between Pi and Pj , player Pi uses a word
Wi belonging to Li = LRi

(pub, privi) and it expects its partner Pj to use a word Wj belonging to the
language L′j = LRj

(pub, priv′j). We assume relations Ri and Rj to be specified by the kind of protocol
we study (PAKE, verifier-based PAKE, secret handshakes, . . . ) and so the languages are defined by
the parameters pub, privi and privj : they both agree on the public part pub, to be possibly parsed in
a different way by each player for each language according to the relations, player Pi owns Wi ∈ Li =
L(pub, privi) ⊆ Si, for privi ∈ Pi, and expects player Pj to use the language L′j = L(pub, priv′j) ⊆ Sj , for

priv′j ∈ Pj . Symmetrically, player Pj owns Wj ∈ Lj = L(pub, privj) ⊆ Sj and expects player Pi to use

the language L′i = L(pub, priv′i) ⊆ Si. The subsets Si,Sj and Pi,Pj are assumed public and determined
by Ri and Rj , and thus by the kind of protocol.

Note however that the respective languages do not need to be the same or to use similar relations:
authentication means could be totally different for the 2 players. The key exchange should succeed if and
only if the two following pairs of equations hold: (L′i = Li and Wi ∈ Li) and (L′j = Lj and Wj ∈ Lj).
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The functionality Flake is parametrized by a security parameter K. It interacts with an adver-
sary S and a set of parties P1,. . . ,Pn via the following queries, where they already agree on the
public parameter pub of the languages:

• New Session: Upon receiving a query (NewSession : sid, Pi, Pj ,Wi,Li = L(pub, privi),L′j =

L(pub, priv′j)) from Pi or S (thus impersonating Pi
a),

– If this is the first NewSession-query with identifier sid, record the tuple
(Pi, Pj ,Wi,Li,L′j , initiator). Send (NewSession; sid, Pi, Pj , pub, initiator) to S and Pj .

– If this is the second NewSession-query with identifier sid
and there is a record (Pj , Pi,Wj ,Lj ,L′i, initiator), record
the tuple (Pj , Pi,Wj ,Lj ,L′i, initiator,Wi,Li,L′j , receiver). Send
(NewSession; sid, Pi, Pj , pub, receiver) to S and Pj .

• Key Computation: Upon receiving a query (NewKey : sid) from S, if there is a record of
the form (Pi, Pj ,Wi,Li,L′j , initiator,Wj ,Lj ,L′i, receiver) and this is the first NewKey-query
for session sid, then

– If (L′i = Li and Wi ∈ Li) and (L′j = Lj and Wj ∈ Lj), then pick a random key sk of
length k and store (sid, sk). Send (sid, success) to S.

– Else, store (sid,⊥), and (sid, fail) is sent to S.

• Key Delivery: Upon receiving a query (SendKey : sid, Pi, sk) from S, then

– if there is a record of the form (sid, sk′), then, if both players are uncorrupted, out-
put (sid, sk′) to Pi. Otherwise, output (sid, sk) to Pi.

– if there is a record of the form (sid,⊥), then, if both players are uncorrupted, pick
a random key sk′ of length k and output (sid, sk′) to Pi. Otherwise, output (sid, sk)
to Pi.

a This is possible when Pi is corrupted (controlled by the adversary), and then any message to Pi is sent to S

Figure 6.3: Ideal Functionality Flake

Description

In [CHK+05], the initial Fpake functionality gave the adversary access to a TestPwd-query, which modeled
the on-line dictionary attack. But it is known since [BCL+05] and [ACGP11] that it is equivalent to use
the split functionality model [BCL+05], generate the NewSession-queries corresponding to the corrupted
players and tell the adversary whether the protocol succeeds or not and see how the protocol terminates.
Both methods enable the adversary to try a credential for a player (on-line dictionary attack). The second
method (that we use here) implies allowing S to ask NewSession-queries on behalf of the corrupted player
(hence the slight change in the NewSession-query on Figure 6.3). It also implies letting the adversary
become aware of the success or failure of the protocol [KS05], but this does not change from the view
of a real-life adversary since this success/failure information is available to the adversary in practice
by simply eavesdropping the conversation between Pi and Pj and checking whether it continues (the
protocol succeeded) or not (it failed). To this aim, the NewKey-query informs the adversary whether the
credentials are consistent with the languages or not. In addition, the split functionality model guarantees
from the beginning which player is honest and which one is controlled by the adversary. This finally
allows us to get rid of the TestPwd-query.

The security goal is to show that the best attack for the adversary is a basic trial execution with a
credential of its guess or choice: the proof will thus consist in emulating any real-life attack by either a
trial execution by the adversary, playing as an honest player would do, but with a credential chosen by
the adversary or obtained in any way; or a denial of service, where the adversary is clearly aware that
its behavior will make the execution fail.

6.3.3 A First Generic Construction

Using smooth projective hash functions on commitments, one can generically define a LAKE protocol
as done in [ACP09]. The basic idea is to make the player commit to their private information (for the
expected languages and the owned words), and eventually the smooth projective hash functions will be
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used to make implicit validity checks of the global relation.
To this aim, we use the commitments and associated smooth projective hash function as described

in Section 5.3, page 99. More precisely, all examples of the previous SPHF in chapter II, page 92 can
be used on commitments divided into one or two parts (the non-equivocable LCSCom or the equivocable
DLCSCom′ commitments), the first part being denoted as C, and the second part (if needed) being
denoted as C′. In the case of a two-part commitment, the first step of the commitment will consist in
sending C along with a Pedersen commitment C′′ on C′ and the second step of the commitment will
consist in sending C′ and t to check the Pedersen commitment. The relations on the committed values
will not be explicitly checked, since the values will never be revealed, but will be implicitly checked using
SPHF. It is interesting to note that in both cases (one-part or two-part commitment), the projected hash
key will only depend on the first part C of the commitment.

As it is often the case in the UC setting, we need the initiator to use stronger primitives than the
receiver. They both have to use non-malleable and extractable commitments, but the initiator will use a

commitment that is additionally equivocable, the DLCSCom′ in two parts ((Ci, C′i) and Comi = Ci · C′i
~ε
),

while the receiver will only need the basic LCSCom commitment in one part (Comj = Cj).
As already explained, SPHF will be used to implicitly check whether (L′i = Li and Wi ∈ Li) and

(L′j = Lj and Wj ∈ Lj). But since in our instantiations private parameters priv and words W will have to
be committed, the structure of these commitments will thus be publicly known in advance: commitments
of P-elements and S-elements. Chapter 5, page 93 discusses on the languages captured by our definition,
and the next sections will illustrate with some AKE protocols. However, while these P and S sets are
embedded in Gn from some n, it might be important to prove that the committed values are actually in
P and S (e.g., one can want to prove it commits bits, whereas they are first embedded as group elements
in G of large order p). This will be an additional language to check on the commitments, but it will be
possible to check it on the C part only, whatever the kind of commitment used, since equivocability will
not be required for this sub-language.

Security Analysis

This leads to a very simple protocol described on Figure 6.4. Since we have to assume common pub, we
make a first round (with flows in each direction) where the players send their contribution, to come up
with pub. These flows will also be used to know which player is honest and which player is controlled by
the adversary (as with the Split Functionality [BCL+05]). In case the languages have empty pub, these
additional flows are not required, since the Split Functionality can be applied on the committed values,
and thus the signing key for the receiver will not be required anymore. This LAKE protocol is secure
against static corruptions. The proof is provided in the next section, and is in the same vein as the one
in [ACP09]. However, it is a bit more intricate:

• in PAKE, when one is simulating a player, and knows the adversary used the correct password,
one simply uses this password for the simulated player. In LAKE, when one knows the language
expected by the adversary for the simulated player and has to simulate a successful execution (be-
cause of success announced by the NewKey-query), one has to actually include a correct word in
the commitment: smooth projective hash functions do not allow the simulator to cheat, equivoca-
bility of the commitment is the unique trapdoor, but with a valid word. The languages must allow
the simulator to produce a valid word W in L(pub, priv), for any pub and priv ∈ P provided by
the adversary or the environment. This will be the case in all the interesting applications of our
protocol (see Section 6.4, page 120): if priv defines a Waters’ verification key vk, with the master
key s such that h = gs, the signing key is sk = vks, and thus the simulator can sign any message;
if such a master key does not exist, one can restrict P, and implicitly check it with the SPHF (the
additional language check, as said above).

• In addition, as already noted, our commitment DLCSCom′ is not formally binding (contrarily to
the much less efficient one used in [ACP09]). The adversary can indeed make the extraction give
~M from Ci, whereas Comi will eventually contain ~M ′ if C′i does not encrypt (1G)n. However,

since the actual value ~M ′ depends on the random challenge ~ε, and the language is assumed sparse
(otherwise authentication is easy), the protocol will fail: this can be seen as a denial of service from
the adversary.

Theorem 6.3.1 Our LAKE scheme from Figure 6.4 realizes the Flake functionality in the Fcrs-hybrid
model, in the presence of static adversaries, under the DLin assumption and the security of the One-Time
Signature.
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Execution between Pi and Pj , with session identifier sid.

• Preliminary Round: each user generates a pair of signing/verification keys (SK,VK) and sends
VK together with its contribution to the public part of the language.

We denote by `i = (sid, ssid, Pi, Pj , pub,VKi,VKj) and by `j = (sid, ssid, Pi, Pj , pub,VKj ,VKi), where
pub is the combination of the contributions of the two players. The initiator now uses a word Wi

in the language L(pub, privi), and the receiver uses a word Wj in the language L(pub, privj)
a. We

assume commitments and associated smooth projective hash functions exist for these languages.

• First Round: user Pi (with random tape ωi) generates a multi-DLCSCom′ commitment on
(privi, priv

′
j ,Wi) in (Ci, C′i), under the label `i. It also computes a Pedersen commitment on C′i

in C′′i (with random exponent t). It then sends (Ci, C′′i ) to Pj ;

• Second Round: user Pj (with random tape ωj) computes a multi-LCS commitment on
(privj , priv

′
i,Wj) in Comj = Cj , with witness ~r, under the label `j . It then generates a challenge

~ε on Ci and hashing/projected keys b hki and hpi associated to Ci (which will be associated to
the future Comi). It finally signs all the flows using SKj in σj , and sends (Cj , ~ε, hpi, σj) to Pi;

• Third Round: user Pi first checks the signature σj , computes Comi = Ci × C′i
~ε

and witness
z (from ~ε and ωi), it generates hashing/projected keys hkj and hpj associated to Comj . It
finally signs all the flows using SKi in σi, and sends (C′i, t, hpj , σi) to Pj ;

• Hashing: Pj first checks the signature σi and the correct opening of C′′i into C′i, it computes

Comi = Ci × C′i
~ε
.

Pi computes Ki and Pj computes Kj as follows:

Ki = Hash(hkj , {(priv′j , privi)} × L(pub, priv′j), `j ,Comj)

·ProjHash(hpi, {(privi, priv′j)} × L(pub, privi), `i,Comi; z)

Kj = ProjHash(hpj , {(privj , priv′i)} × L(pub, privj), `j ,Comj ;~r)

·Hash(hki, {(priv′i, privj)} × L(pub, priv′i), `i,Comi)

aThe languages considered depend on two possibly different relations, namely Li = LRi
(pub, privi) and Lj =

LRj
(pub, privj), but we omit them for the sake of clarity.

bRecall that the SPHF is constructed in such a way that this projected key does not depend on C′i and is indeed
associated to the future whole Comi.

Figure 6.4: Language-based Authenticated Key Exchange from a Smooth Projective Hash Function on
Commitments

For the sake of simplicity, we give in Figure 6.5 an explicit version of the protocol described in

Figure 6.4. Recall that Comi is the combination Ci · C′i
~ε

of Ci and C′i when the challenge ~ε is known,
while C′′i is the Pedersen commitment of C′i with randomness t, and Comj = Cj . We omit the additional
verification that all the committed values are in the correct subsets P and S, since in the proof below
we will always easily guarantee this membership. The proof heavily relies on the properties of the
commitments and smooth projective hash functions given in section 2.6.5, page 46 and 5.3, page 99.

6.3.4 Notations

The proof follows that of [CHK+05] and [ACP09], but with a different approach since we want to
prove that the best attack the adversary can perform is to play as an honest player would do with a
chosen credential (privi, priv

′
j ,Wi) —when trying to impersonate Pi— or (privj , priv

′
i,Wj) —when trying

to impersonate Pj—. In order to prove Theorem 6.3.1, page 114, we need to construct, for any real-
world adversary A (controlling some dishonest parties), an ideal-world adversary S (interacting with
dummy parties and the split functionality sFlake) such that no environment Z can distinguish between
an execution with A in the real world and S in the ideal world with non-negligible probability.

We do not formally define the functionality sFlake, but it is straightforward from the definition
of Flake (see [BCL+05]). In particular, we assume that at the beginning of the protocol, S receives
from it the contribution pubi of Pi to the public language pub as answer to the Init query sent by the
environment on behalf of this player. After the preflows, it will receive the public language pub (as



116 Applications 6.3

Initiator Pi Receiver Pj

(I0) (VKi, SKi)← KeyGenS() (R0) (VKj ,SKj)← KeyGenS()
pre-flow

(VKi, pubi)−−−−−−−−−−−−−−−→→ pub ←−−−−−−−−−−−−−−− → pub
(VKj , pubj)

`i = (`, pub,VKi,VKj) `j = (`, pub,VKj ,VKi)

(I1) Li = L(pub, privi),L′j = L(pub, priv′j)
Wi ∈ L(pub, privi)
(Ci, C′i, C′′i , t) =

Commit(`i, (privi, priv
′
j ,Wi); ri)

flow-one

(Ci, C′′i )
−−−−−−−−−−−−−−−→

(R2) L′i = L(pub, priv′i),Lj = L(pub, privj)
Wj ∈ L(pub, privj)
Cj = Commit(`j , (privj , priv

′
i,Wj); rj)

~ε
$←,

hki
$←, hpi = ProjKG(hki,Comi)

flow-two

(Cj , ~ε, hpi, σj)←−−−−−−−−−−−−−−− σj = Sign(SKj , (`j , Cj , Ci, C′i, ~ε, hpi))
(I3) Abort if not

Verif(VKj , (`j , Cj , Ci, C′i, ~ε, hpi), σj)
Otherwise, do the following:

hkj
$←, hpj = ProjKG(hkj ,Comj)

σi = Sign(SKi, (`i, Cj , Ci, C′i, ~ε, hpi, hpj))
Hi = Hash(hki,L′j , `j ,Comj)
H ′j = ProjHash(hpi,Li, `i,Comi; ri, ~ε)
ski = Hi ×H ′j
Set the session as accepted

and use ski as a shared key

flow-three

(C′i, t, hpj , σi)−−−−−−−−−−−−−−−→
(R4) Abort if not

Verif(VKi, (`i, Cj , Ci, C′i, ~ε, hpi, hpj), σi)
or not correct opening t for C′i in C′′i

Otherwise, do the following:
Hj = Hash(hkj ,L′i, `i,Comi)
H ′i = ProjHash(hpj ,Lj , `j ,Comj ; rj)
skj = Hj ×H ′i
Set the session as accepted

and use skj as a shared key

Figure 6.5: Description of the language authenticated key exchange protocol for players (Pi, ssid), with
index i, message Wi ∈ Li = L(pub, privi) and expected language for Pj L

′
j = L(pub, priv′j) and (Pj , ssid),

with index j, message Wj ∈ Lj = L(pub, privj) and expected language for Pi L
′
i = L(pub, priv′i). The

label is ` = (sid, ssid, Pi, Pj). The random values used in the commitments (witnesses) are all included
in ri and rj , and we note Comj = Cj and Comi = Ci × C~εi .

answer to the NewSession query transmitted by sFlake to Flake, as seen on Figure 6.3) as determined
during this preflow phase.

When initialized with security parameter K, the simulator begins by generating the CRS for the
commitment (public parameters but also extraction and equivocation trapdoors), as well as the possibly
required trapdoors to be able to generate, for any pub, a word in the language L(pub, priv) when priv is
known. It then initializes the real-world adversary A, giving it these values. The simulator then starts
its interaction with the environment Z, the functionality sFlake and its subroutine A.

Since we are in the static-corruption model, the adversary can only corrupt players before the ex-
ecution of the protocol. We assume players to be honest or not at the beginning, and they cannot
be corrupted afterwards. However, this does not prevent the adversary from modifying flows coming
from the players. Indeed, since we are in a weak authenticated setting, when a player acts dishonestly
(even without being aware of it), it is either corrupted, hence the adversary knows its private values
and acts on its behalf; or the adversary tries to impersonate it with chosen/guessed inputs. In both
cases, we say the player is A-controlled. Following [CHK+05], we say that a flow is oracle-generated if
it was sent by an honest player and arrives without any alteration to the player it was meant to. We
say it is non-oracle-generated otherwise, that is if it was sent by a A-controlled player (which means
corrupted, or which flows have been modified by the adversary). The one-time signatures are aimed at
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avoiding changes of players during a session: if pre-flow is oracle-generated for Pi, then flow-one and
flow-three cannot be non-oracle-generated without causing the protocol to fail because of the signature,
for which the adversary does not know the signing key. Similarly, for Pj . On the other hand, if pre-flow
is non-oracle-generated for Pi, then flow-one and flow-three cannot be oracle-generated without causing
the protocol to fail, since the honest player would sign wrong flows (the flows the player sent before the
adversary alters them). In both cases, the verifications of the signatures will fail at Steps (I3) or (R4)
and Pi or Pj will abort. One can note that if there is one flow only in the protocol for one player, its
signature is not required, which is the case for Pj when there is no pub to agree on at the beginning.
But this is just an optimization that can be occasionally applied, as for the PAKE protocol. We do not
consider it here.

To deal with both cases of A-controlled players (either corrupted or impersonated by the adversary),
we use the Split Functionality model. We thus add a pre-flow which will help us know which players
are honest and which ones are A-controlled. If one player is honest and the other one corrupted, the
adversary will send the pre-flow on behalf of the latter, and the simulator will have to send the pre-flow
on behalf of the former. But in the case where both players are honest at the beginning of the protocol,
both pre-flow will have to be sent by S on behalf of these players and the adversary can then decide to
modify one of these flows. This models the fact that the adversary can decide to split a session between
Pi and Pj by answering itself to Pi, and thus trying to impersonate Pj with respect to Pi, and doing the
same with Pj . Then, the Split Functionality model ensures that two independent sessions are created
(with sub-session identifiers). We can thus study these sessions independently, which means that we
can assume, right after the pre-flow, that either a player is honest if its pre-flow is oracle-generated, or
A-controlled if the pre-flow is non-oracle-generated. Since we want to show that the best possible attack
for the adversary (by controlling a player) consists in playing honestly with a trial credential, we have
to show that the view of the environment is unchanged if we simulate this dishonest player as an honest
player. The simulator then has to transform its flows into queries to the Ideal Functionality sFlake, and
namely the NewSession-query. Still, the A-controlled player is not honest, and can have a bad behavior
when sending the real-life flows, but then either it has no strong impact, and it is similar to an honest
behavior, or it will make the protocol to fail: we cannot avoid the adversary to make denial of service
attack, and the adversary will learn nothing.

As explained in [BCL+05] and [ACGP11], where the simulator actually had access to a TestPwd
query to the functionality, it is equivalent to grant the adversary the right to test a password for Pi
while trying to play on behalf of Pj (i.e. , use a TestPwd query) or to use the split functionality model
and generate the NewSession queries corresponding to the A-controlled players and see how the protocol
terminates, since it corresponds to a trial of one credential by the adversary (one-line dictionary attack).

The proof will thus consist in generating ideal queries (and namely the NewSession) when receiving
non-oracle-generated flows from A-controlled players, and generating real messages for the honest players
(whose NewSession queries will be received from the environment). This will be done in a indistinguishable
way for the environment.

We assume from now on that we know in which case we are, and the pub part is fixed. We then
describe the simulator for each of these cases, while it has generated the pre-flow for the honest players
by generating (VK,SK)← KeyGenS(), and thus knows the signing keys. We denote by Li = L(pub, privi)
the language used by Pi, and by L′j = L(pub, priv′j) the language that Pi expects Pj to use. We use
the same notations in the reverse direction. The languages considered depend on two possibly different
relations: Li = LRi

(pub, privi) and Lj = LRj
(pub, privj), but we omit them for the sake of clarity. Note

that the simulator will use the NewKey query to learn whether the protocol is a success or a failure. This
will enable it to check whether the LAKE should fulfill, that is, whether the two users players compatible
words and languages, i.e. . priv′i = privi, priv

′
j = privj , Wi ∈ Li and Wj ∈ Lj . For the most part, the

interaction is implemented by the simulator S just following the protocol on behalf of all the honest
players.

6.3.5 Description of the Simulators

Initialization and Simulation of pre-flow

This is the beginning of the simulation of the protocol, where S has to send the message pre-flow on
behalf of each non-corrupted player.

Step (I0). When receiving the (Init : ssid, Pi, Pj , pubi, initiator) from sFlake as answer to the Init query
sent by the environment on behalf of Pi, S starts simulating the new session of the protocol for party
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Pi, peer Pj , session identifier ssid. S chooses a key pair (SKi,VKi) for a one-time signature scheme
and generates a pre-flow message with the values (VKi, pubi). It gives this message to A on behalf
of (Pi, ssid).

Step (R0). When receiving the (Init : ssid, Pj , Pi, pubj , receiver) from sFlake as answer to the Init query
sent by the environment on behalf of Pj , S starts simulating the new session of the protocol for party
Pj , peer Pi, session identifier ssid. S chooses a key pair (SKj ,VKj) for a one-time signature scheme
and generates a pre-flow message with the values (VKj , pubj). It gives this message to A on behalf
of (Pj , ssid).

Splitting the Players

As just said, thanks to the Split Functionality model, according to which flows were transmitted or
altered by A, we know from the pre-flow which player(s) is (are) honest and which player(s) is (are)
A-controlled, and the public part pub. We can consider each case independently after the initial split,
during which S generated the signing keys of the honest players. Thanks to the signature in the last
flows for each player, if the adversary tries to take control on behalf of a honest user for some part of the
execution (without learning the internal states, since we exclude adaptive corruptions), the verification
will fail. Then we can assume that the sent flows are the received flows.

One can note that the prior agreement on pub allows to simulate Pi before any information from
Pj and also whether it should be a success or not. Without such an agreement, the simulator would
not know which value to use for pub whereas it cannot change its mind later, since it is sent in clear.
Everything else is committed: either in an equivocable way on behalf of Pi so that we can change it
later when we know the real status of the session; or in a non-equivocable way on behalf of Pj since we
can check the status of the session before making this commitment. Of course, both commitments are
extractable.

We come back again to the case of our equivocable commitment with SPHF that is not a really
extractable/binding commitment since the player can open it in a different way one would extract it:
if extraction leads to an inconsistent tuple, there is little change that with the random ~ε it becomes
consistent; if extraction leads to a consistent tuple, there is little change that with the random ~ε it
remains consistent, and then the real-life protocol will fail, whereas the ideal-one was successful at the
NewKey-time. But then, because of the positive NewKey-answer, the SendKey-query takes the key-input
into consideration, that is random on the initiator side because of the SPHF on an invalid word, and
thus indistinguishable from the environment point of view from a failed session: this is a denial of service
of which the adversary is aware.

Hence, the three simulations presented below exploit the properties of our commitments and SPHF
to make the view of the environment indistinguishable from a real-life attack, just using the simulator S
that is allowed to interact with the ideal functionality on behalf of players, but in an honest way only,
since the functionality is perfect and does not know bad behavior.

Case 1: Pi is A-controlled and Pj is honest

In this case, S has to simulate the concrete messages in the real-life from the honest player Pj , for which
it has simulated the pre-flow and thus knows the signing key, and has to simulate the queries to the
functionality as if the A-controlled player Pi was honest.

Step (I1). This step is taken care of by the adversary, who sends its flow-one, from which S ex-
tracts (privi, priv

′
j ,Wi). S then sends the query (NewSession : ssid′, Pi, Pj ,Wi,Li = L(pub, privi),L′j =

L(pub, priv′j)) to Flake on behalf of Pi.

Step (R2). The NewSession query for this player (Pj , ssid
′) has been automatically transferred from the

split functionality sFlake to Flake (transforming the session identifier from ssid to ssid′). S receives the
answer (NewSession : ssid, Pj , Pi, pub, receiver) and makes a call NewKey to the functionality to check the
success of the protocol. In case of a success, S generates a word Wj ∈ L(pub, priv′j) and uses privj = priv′j
and priv′i = privi for this receiver session (we have assumed the existence of a trapdoor in the CRS to
generate such valid words) and produces a commitment Cj on the tuple (privj , priv

′
i,Wj). Otherwise, S

produces a commitment Cj on a tuple (privj , priv
′
i,Wj), where (privj ,Wj) is consistent with pub, and priv′i

is a dummy value in Pi.
It then generates a challenge value ~ε and the hash keys (hki, hpi) on Ci. It sends the flow-two message

(Cj , ~ε, hpi, σj) to A on behalf of Pj , where σj is the signature on all the previous information.



6.3 Language Authenticated Key Exchange 119

Step (I3). This step is taken care of by the adversary, who sends its flow-three.

Step (R4). Upon receiving m = (flow-three, C ′i, t, hpj , σi), S makes the verification checks, and possibly
aborts. In case of correct checks, S already knows whether the protocol should succeed, thanks to the
NewKey query. If the protocol is a success, then S computes receiver session key honestly, and makes a
SendKey to Pj . Otherwise, S makes a SendKey to Pj with a random key that will anyway not be used.

Case 2: Pi is honest and Pj is A-controlled

In this case, S has to simulate the concrete messages in the real-life from the honest player Pi, for which
it has simulated the pre-flow and thus knows the signing key, and has to simulate the queries to the
functionality as if the A-controlled player Pj was honest.

Step (I1). The NewSession query for this player (Pi, ssid
′) has been automatically transferred from the

split functionality sFlake to Flake (transforming the session identifier from ssid to ssid′). S receives the
answer (NewSession : ssid, Pi, Pj , pub, initiator) and generates a flow-one message by committing to the
tuple (privi, priv

′
j ,Wi) where (privi,Wi) is a pair consistent with pub, and priv′j is a dummy parameter in

Pj . It gives this commitment (Ci, C′′i ) to A on behalf of (Pi, ssid
′).

Step (R2). This step is taken care of by the adversary, who sends its flow-two = (flow-two, Cj , ~ε, hpi, σi),
from which S first checks the signature, and thereafter extracts the committed triple (privj , priv

′
i,Wj).

S then sends the query (NewSession : ssid′, Pj , Pi,Wj ,Lj = L(pub, privj),L′i = L(pub, priv′i)) to Flake on
behalf of Pj .

Step (I3). S makes a NewKey query to the functionality to know whether the protocol should succeed.
In case of a success, S generates a word Wi ∈ L(pub, priv′i) and uses privi = priv′i for this initiator session
(we have assumed the existence of a trapdoor in the CRS to generate such valid words) and then uses the
equivocability trapdoor to update C′i and t in order to contain the new consistent tuple (privi, priv

′
j ,Wi)

with respect to the challenge ~ε. If the protocol should be a success, then S computes initiator session
key honestly, and makes a SendKey to Pi. Otherwise, S makes a SendKey to Pi with a random key that
will anyway not be used.
S sends the flow-three message (C′i, t, hpj , σi) to A on behalf of Pi, where σi is the signature on all

the previous information.

Step (R4). This step is taken care of by the adversary.

Case 3: Pi and Pj are honest

In this case, S has to simulate the concrete messages in the real-life from the two honest players Pi
and Pj , for which it has simulated the pre-flow and thus knows the signing keys.

Step (I1). The NewSession query for this player (Pi, ssid
′) has been automatically transferred from the

split functionality sFlake to Flake (transforming the session identifier from ssid to ssid′). S receives the
answer (NewSession : ssid, Pi, Pj , pub, initiator) and generates a flow-one message by committing to the
tuple (privi, priv

′
j ,Wi) where (privi,Wi) is a pair consistent with pub, and priv′j is a dummy parameter in

Pj . It gives this commitment (Ci, C′′i ) to A on behalf of (Pi, ssid
′).

Step (R2). The NewSession query for this player (Pi, ssid
′) has been automatically transferred from the

split functionality sFlake to Flake (transforming the session identifier from ssid to ssid′). S receives the
answer (NewSession : ssid, Pj , Pi, pub, receiver) and makes a call NewKey to the functionality to check the
success of the protocol. In case of a success, S generates a word Wj ∈ L(pub, priv′j) and uses privj = priv′j
and priv′i = privi for this receiver session (we have assumed the existence of a trapdoor in the CRS to
generate such valid words) and produces a commitment Cj on the tuple (privj , priv

′
i,Wj). Otherwise, S

produces a commitment Cj on a tuple (privj , priv
′
i,Wj), where (privj ,Wj) is consistent with pub, and priv′i

is a dummy value in Pi.
It then generates a challenge value ~ε and the hash keys (hki, hpi) on Ci. It sends the flow-two message

(Cj , ~ε, hpi, σj) to A on behalf of Pj , where σj is the signature on all the previous information.

Step (I3). When the session (Pi; ssid′) receives the message m = (flow-two, Cj , ~ε, hpi, σj) from its peer
session (Pj ; ssid′), the signature is necessarily correct. If the session should be a success (answer of the
previous NewKey-query), S updates its commitment with a word Wi ∈ L(pub, priv′i) and uses privi = priv′i
for this initiator session (we have assumed the existence of a trapdoor in the CRS to generate such valid
words) and then uses the equivocability trapdoor to update C′i and t in order to contain the new consistent
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tuple (privi, priv
′
j ,Wi) with respect to the challenge ~ε. Otherwise, it does not change anything about this

commitment and uses the initial value that is likely inconsistent.
In any case, S makes a SendKey to Pi with a random key that will anyway not be used, since no

player is corrupted.

Step (R4). When the session (Pj ; ssid′) receives the message m = (flow-three, hpj , C
′
i, σi) from its peer

session (Pi; ssid′), the signature will necessarily correct. S makes a SendKey to Pj with a random key
that will anyway not be used, since no player is corrupted.

6.4 Efficient Instantiation of AKE protocols

In this section, we first recall two useful languages, and then give some concrete instantiations of several
AKE protocols, using our generic protocol of LAKE, and compare their efficiencies to the existing
instantiations.

6.4.1 Useful Languages

This section recalls two relations to be thereafter used in concrete instantiations. The same way as
before, we will underline elements the prover wants to keep private, and that will be committed either
with the LCSCom non-equivocable commitment or the DLCSCom′ equivocable commitment. As equality
tests and linear pairing product equations have been detailed earlier throughout chapter 5, page 93, we
are mainly going to explain here how we can additionally restrict the space of the committed values.

Bit Commitment: m ∈ {0, 1}. Player Pi owns a word Wi which is either 0 or 1, and wants to prove it.
The apparent problem with disjunction of languages from [ACP09] comes from the fact the projection key
relies on the final commitment. This makes no difference for the LCSCom but can be problematic in the
case of the DLCSCom′. While in a regular context this does not create extra problems, this contradicts
the creation of our projection key before the end of the equivocable commitment (in the third round of
the protocol). But in our case, the verifier will build the projection key on the sole pre-commit C, and we
make sure that in our simulation for the proof the simulator always pre-commits to mi = 0: we do not
need the equivocability on that property for the commitment. However, this bit-language will often be
in combination with some other languages (like ”a valid signature”): the computation of the hash values
for the bit-language will be on the commitment C only, while the contribution for the other languages
will be on the final commitment (and the hash values will be multiplied).

Finite Subset: m ∈ S = {A,B, . . .}. Player Pi owns a word Wi in a (polynomial-sized) set S. This
follows the same idea as before, except that in this case, the simulator in the proof will always pre-commit
to A, which does not require equivocability on the C part of the commitment since it is in this language.
Equivocation can be required to make it in a more specific language, but then this will be checked with
another SPHF on the full commitment.

6.4.2 Password Authenticated Key Exchange

Using our generic construction, we can easily obtain a PAKE protocol, as described on Figure 6.6, where
we optimize from the generic construction, since pub = ∅, removing the agreement on pub, but still
keeping the signing key VKi to avoid man-in-the-middle attacks since it has another later flow: Pi uses a
password Wi and expects Pj to own the same word, and thus in the language L′j = Li = {Wi}; Pj uses
a password Wj and expects Pi to own the same word, and thus in the language L′i = Lj = {Wj}; The
relation is the equality test between privi and privj , which have no restriction in G (hence P = G). As

the word Wi, the language private parameters privi of a user and priv′j of the expected language for the
other user are the same, each user can commit in the protocol to only one value: its password Wi.

It is quite efficient, as discussed in the next session, and relies on the DLin assumption. We can of
course instantiate it with the Cramer-Shoup variant, under the DDH assumption, and it becomes even
more efficient.

6.4.3 Verifier-based PAKE

The above scheme can be modified into an efficient PAKE protocol that is additionally secure against
server compromise: the also so-called verifier-based PAKE, where the client owns a password pw, while
the server knows a verifier only, such as gpw, so that in case of break-in to the server, the adversary will
not immediately get all the passwords.
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Pi uses a password Wi and Pj uses a password Wj . We denote ` = (sid, ssid, Pi, Pj).

• First Round: Pi (with random tape ωi) first generates a pair of signing/verification keys
(SKi,VKi) and a DLCSCom′ commitment on Wi in (Ci, C′i), under `i = (`,VKi). It also
computes a Pedersen commitment on C′i in C′′i (with random exponent t). It then sends
(VKi, Ci, C′′i ) to Pj ;

• Second Round: Pj (with random tape ωj) computes a LCSCom commitment on Wj in
Comj = Cj , with witness ~r, under the label `. It then generates a challenge ε on Ci and
hashing/projected keys hki and the corresponding hpi for the equality test on Comi (”Comi

is a valid commitment of Wj”, this only requires the value ξi computable thanks to Ci). It
then sends (Cj , ε, hpi) to Pi;

• Third Round: user Pi can compute Comi = Ci×C′i
ε

and witness z (from ε and ωi), it generates
hashing/projected keys hkj and hpj for the equality test on Comj . It finally signs all the flows
using SKi in σi and send (C′i, t, hpj , σi) to Pj ;

• Hashing: Pj first checks the signature and the validity of the Pedersen commitment (thanks
to t), it computes Comi = Ci × C′i

ε
. Pi computes Ki and Pj computes Kj as follows:

Ki = Hash(hkj ,L′j , `,Comj) · ProjHash(hpi,Li, `i,Comi; z)

Kj = ProjHash(hpj ,Lj , `,Comj ;~r) · Hash(hki,L′i, `i,Comi)

Figure 6.6: Password-based Authenticated Key Exchange

To this aim, as usually done, one first does a PAKE with gpw as common password, then asks the
client to additionally prove it can compute the Diffie-Hellman value hpw for a basis h chosen by the server.
Ideally, we could implement this trick, where the client Pj just considers the equality test between the
gpw and the value committed by the server for the language L′i = Lj , while the server Pi considers the
equality test with (gpw, hpw), where h is sent as its contribution to the public part of the language by
the server Li = L′j . Since the server chooses h itself, it chooses it as h = gα, for an ephemeral random
α, and can thus compute hpw = (gpw)α. On its side, the client can compute this value since it knows pw.
The client could thus commit to (gpw, hpw), in order to prove its knowledge of pw, whereas the server
could just commit to gpw. Unfortunately, from the extractability of the server commitment, one would
just get gpw, which is not enough to simulate the client.

To make it in a provable way, the server chooses an ephemeral h as above, and they both run the
previous PAKE protocol with (gpw, hpw) as common password, and mutually checked: h is seen as a the
pub part, hence the preliminary flows are required.

Credential-Authenticated Key Exchange

In [CCGS10], the authors proposed instantiations of the CAKE primitive for conjunctions4 of atomic

policies that are defined algebraically by relations of the form
∏k
j=1 g

Fj

j = 1 where the gj ’s are elements
of an abelian group and Fj ’s are integer polynomials in the variables committed by the users. We
can construct LAKE for languages with the same expressibility using the constructions described in
chapter II, page 92. The resulting schemes are faster and more bandwidth-efficient than the proposals
from [CCGS10]. Our schemes require two interleaved executions of the commitment scheme where the
CAKE schemes need at least three.

In [CCGS10], the core of their constructions relies on their practical UC zero-knowledge proof. There
is no precise instantiation of such proof, but it is very likely to be inefficient. Their proof technique indeed
requires to transform the underlying Σ-protocols into corresponding Ω-protocols [GMY06] by verifiably
encrypting the witness. An Ω-protocol is a Σ-protocol with the additional property that it admits a
polynomial-time straight-line extractor. Since the witnesses are scalars in their algebraic relations, their
approach requires either inefficient bit-per-bit encryption of these witnesses or Paillier encryption in
which case the problem of using group with different orders in the representation and in the encryption
requires additional overhead.

Even when used with Σ-protocols, their PAKE scheme without UC-security, requires at least two

4Camenisch et al. [CCGS10] claim that their CAKE protocol can also handle disjunctions of such languages but the
technique relies on known techniques for circuit evaluation (based on homomorphic encryption) and are even less efficient.
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proofs of knowledge of representations that involve at least 30 group elements (if we assume the encryption
to be linear Cramer-Shoup), and some extra for the last proof of existence (cf. [CKS11]), where our
PAKE requires at most 22 group elements (see next section). Anyway they say, their PAKE scheme is
less efficient than [CHK+05], which needed 6 rounds and around 30 modular exponentiations per user,
while our efficient PAKE requires overall 42 exponentiations in only 3 rounds. Our scheme is therefore
more efficient than the scheme from [CHK+05] for the same security level (i.e. UC-security with static
corruptions).

Secret-handshakes

We can also instantiate a (linkable) Secret Handshakes protocol, using our scheme with two different
languages: Pi will commit to a valid signature σi on a message mi (his identity for example), under
a private verification key vki, and expects Pj to commit to a valid signature on a message m′j under

a private verification key vk′j ; but Pj will do analogously with a signature σj on mj under vkj , while

expecting a signature on m′i under vk′i. The public parts of the signature (the second component) are
sent in clear with the commitments.

In a regular Secret Handshakes both users should use the same languages. But here, we have a
more general situation5: the two participants will have the same final value if and only if they both
belong to the organization the other expects. If one lies, our protocol guarantees no information leakage.
Furthermore, the semantic security of the session is even guaranteed with respect to the authorities, in
a forward-secure way (this property is also achieved in [JL09] but in a weaker security model). Finally,
our scheme supports revocation and can handle roles as in [AKB07].

Standard secret handshakes, like [AKB07], usually work with credentials delivered by a unique au-
thority, this would remove our need for a hidden verification key, and private part of the language. Both
users would only need to commit to signatures on their identity/credential, and show that they are
valid. This would require 24 group elements with our approach. Their construction requires only 4 ele-
ments under BDH, however it relies on the asymmetric Waters IBE with only two elements, whereas the
only security proof known for such IBE [Duc10] requires an extra term in G2 which would render their
technique far less efficient, as several extra terms would be needed to expect a provably secure scheme.
While sometimes less effective, our LAKE approach can manage Secret Handshakes, and provide ad-
ditional functionalities, like more granular control on the credentials as part of them can be expressly
hidden by both the users.

Unlinkable Secret-handshakes

Moving the users’ identity from the public pub part to individual private priv part or even to the word W ,
and combining our technique with [BPV12b], it is also possible to design an unlinkable Secret Handshakes
protocol [JL09] with practical efficiency. It illustrates the case where committed values have to be proven
in a strict subset of G, as one has to commit to bits: the signed message M is now committed and not
in clear, it thus has to be done bit-by-bit since the encoding G does not allow algebraic operations with
the content to apply the Waters function on the message. It is thus possible to prove the knowledge
of a Waters signature on a private message (identity) valid under a private verification key. Additional
relations can be required on the latter to make authentication even stronger.

6.4.4 Complexity

In the Table 6.1, we give the number of elements to be sent (group elements or scalars) and the number
of exponentiations required for each operation (commitment and SPHF), where we consider the Equality
Test, the Linear Pairing Product Equations and the OR languages. One has to commit all the private
inputs, and then the cost for relations is just the additional overhead due to the projected keys and
hashing computations once the elements are already committed: an LCSCom commitment is 5 group
elements, and a DLCSCom′ is twice more, plus the Pedersen commitment, the challenge ε and the
opening t, and thus 13 elements. If the global language is a conjunction of several languages, one should
simply add all the costs, and consider the product of all the sub-hashes as the final hash value from the
SPHF.

5 [AKB07] call it a dynamic matching
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DLin G Zp Exp.
LCSCom 5n 0 7n+ 2
DLCSCom 10n+ 1 2 18n+ 6
Equality 2 0 14
LPPE 2n+ 1 0 10n+ 11
OR 1 0 12

CSCom G Zp Exp.
CSCom 4n 0 4n+ 1
DCSCom 8n+ 1 2 12n+ 5
Equality 1 0 10
LPPE n+ 1 0 7n+ 9
OR 1 0 9

Table 6.1: Computational and Communication Costs

PAKE

Two users want to prove to each other they possess the same password. In this case Wi = priv′j = privi =

privj = priv′i = Wj . So Pi will commit to his password, and thus a unique DLCSCom commitment for

Wi, privi and priv′i. This is the same for Pj , but with an LCSCom. They then send projected keys for
equality tests: 13 group elements and 2 scalars for Comi and 7 group elements for Comj , plus VKi and
ski. This leads to 20 group elements and two scalars our PAKE scheme. The DDH-based variant would
use 15 group elements and 2 scalars only in total, which is far more efficient than existing solutions, and
namely [ACP09] that uses a bit-per-bit commitment to provide equivocability.

CRS: a group G of prime order p, with six independent generators (g1, g2, h, c, d, ζ)
$← G6, a

collision-resistant hash function HK , a reversible mapping G from {0, 1}n to G, a signature scheme
(KeyGenS ,Sign,Verif). We note M = G(m), and ` = (sid, ssid, Pi, Pj).

(SKi,VKi)← KeyGenS()
`i = (`,VKi)

ai, ri
$← Zp

(Ci, C′i) = DCSCom(`i,Mi, 1G; ri, ai),

ti
$← Zp, χi = HK(Ci, C′i), C′′i = gti1 ζ

χi ,
VKi, Ci, C′′i−−−−−−−−−−−−−−−→

rj
$← Zp

Cj = CS(`,Mj ; rj),
ξi = HK(`i, ~ui, ei),

hki = (ηi, θi, λi, µi)
$← Z4

p,

hpi = hλigηi1 g
θi
2 (cdξi)µi

Cj , ε, hpi←−−−−−−−−−−−−−−− ε
$← Z∗p

ε
?

6= 0, zi = ri + εai,
ξj = HK(`, ~uj , ej),

hkj = (ηj , θj , λj , µj)
$← Z4

p,

hpj = hλjg
ηj
1 g

θj
2 (cdξj )µj ,

H ′i = hpzii
Hj = Hash(hkj ,LMi

, `′j , Cj)
Ki = H ′i ·Hj

σi = Sign(SKi, (`i, `, Ci, C′i, Cj , ε, hpi, hpj))
hpj , C′i, ti, σi−−−−−−−−−−−−−−−→

χi = HK(Ci, C′i), πi
?= gti1 ζ

χi

Hi = Hash(hki,LMj , `
′
i, CiC′i

εi)
H ′j = hp

rj
j Kj = Hi ·H ′j ,

If Verif(VKi, (`i, `, Ci, C′i, Cj , ε, hpi, hpj), Si) sets the session as accepted

Figure 6.7: Password Authenticated Key Exchange based on Cramer-Shoup

Verifier-based PAKE

As explained earlier, we do a PAKE with the common password (gpw, hpw), where h has been chosen
by the server: the commitment Comi needs 21 group elements plus 2 scalars, and 4 additional group
elements to check it; the commitment Comj needs 10 group elements, and 4 additional elements to check
it. Because of the ephemeral h, one has to send in total 40 group elements and 2 scalars, plus the
one-time signatures. The DDH-based variant would use 29 group elements and 2 scalars only in total.

Secret Handshake

The users want to check their partner possesses a valid signature on their public identity or pseudonym
(in pub) under some valid but private verification key. More precisely, Pi wants to prove he possesses
a valid signature σ on the public message m (his identity or a pseudonym) under a private verification
key vk: we thus have m in the pub part, privi = vk and W = σ. This is the same for Pj . Using Waters
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CRS: a group G of prime order p, with eleven independent generators
(g, g1, g2, g3, h1, h2, c1, c2, d1, d2, ζ)

$← G11, n + 1 independent generators fi
$← Gn+1 for

the Waters function F , an extra generator h = gs, (which defines signing/verification keys
(sk, vk) = (hx, gx)), a collision-resistant hash function HK , a reversible mapping G from {0, 1}n
to G, and a signature scheme S. In the following we note ` = (sid, ssid, Pi, Pj) and C∗ = C∗C′∗

ε
.

We assume each user possesses a valid signature Σ on their identity valid under vk∗. The
language L∗ is composed of valid signatures Σ∗ under the private p∗ verification key vk∗.

(SKi,VKi)← KeyGenS()
VKi, pubi←−−−−−−−−−−→
VKj , pubj

(SKj ,VKj)← KeyGenS()

`′i = (`, pub,VKi) `′j = (`, pub,VKj)

ωi = (~ai,~bi, ~ri, ~si)
$← Z2

p, ti
$← Zp

Li = (vki,Σi)
(Ci, C′i) = 2− DLCSCom(`′i,Li, 1

2
G;ωi)

χi = HK(Ci, C′i), C′′i = gti1 ζ
χi

Ci, C′′i−−−−−−−−−−−−−−−→

ωj = (~rj , ~sj)
$← Z2

p

Lj = (vkj ,Σj)
Cj = 2− LCSCom(`′j ,Lj;ωj)

Cj , ε, σi←−−−−−−−−−−−−−−−

hki
$← Z5×2

p

hpi = ProjKG(hki, (p′ i ∧ L′i), Ci)
ε

$← Z∗p
σj = Sign(SKj , (`

′
i, `
′
j , Ci, Cj , ε)

~zi = (zi,r = ~ri + ε~ai, zi,s = ~s+ ε~bi)

hkj
$← Z5×2

p

hpj = ProjKG(hkj , (p′ j ∧ L′j), Cj)
σi = Sign(SKi, (`

′
i, `
′
j , Ci, C′′i , Cj , ε)

hpj , C′i, ti, σi−−−−−−−−−−−−−−−→
H ′pi

= ProjHash(hppi
, vki, `

′
i,Cpi

;~zi)
H ′Li

= ProjHash(hpLi
,Li, `′i,CLi

;~zi)
Hpi

= Hash(hkpi
, vk′i, `

′
i,Cpi

)
HLi

= Hash(hpLi
,L′i, `′i,CLi

)
Hpj

= Hash(hkpj
, vk′j , `

′
j , Cpj

)
HLj

= Hash(hpLj
,L′j , `′j , CLj

)

H ′pj
= ProjHash(hppj

, vkj , `
′
j , Cpj

;ωj)
H ′Lj

= ProjHash(hpLj
,Lj , `′j , CLj ;ωj)

H ′j = e(H ′pi
, g) ·H ′Li

Hi = e(Hpj
, g) ·HLj

Ki = Hi ·H ′j

Hj = e(Hpi
, g) ·HLi

H ′i = e(H ′pj
, g) ·H ′Lj

Kj = H ′i ·Hj

If Verif(VKj , (`
′
i, `
′
j , Ci, Cj , ε), σj)

sets the session as accepted .
If Verif(VKi, (`

′
i, `
′
j , Ci, C′i, Cj , ε), σi)

sets the session as accepted .

Figure 6.8: Secret Handshake

signature, σ = (σ1, σ2), where σ1 only has to be encrypted, because σ2 does not contain any information,
it can thus be sent in clear. To achieve unlinkability, one can rerandomize this signature σ to make the
σ2 values different and independent each time.

As a consequence, the committed values are: vk that can be any group element, since with the
master secret key s such that h = gs for the global parameters of the Waters signature one can derive
the signing key associated to any verification key, and thus generate a valid word in the language; and
σ1. One additionally sends σ2 in clear, and so 22 group elements plus 2 scalars for Comi, and 11 group
elements for Comj . The languages to be verified are privi = priv′i, on the committed privi = vki with
the expected priv′i = vk′i, and the Linear Pairing Product Equation for the committed signature σi, but
under the expected vk′i: 5 group elements for the projected keys in both directions: 43 group elements
plus 2 scalars are sent in total (plus the one-time signatures).

?



Conclusion

This thesis can be divided into two main parts, in the first one we focused on how to use non-interactive
zero-knowledge or witness-indistinguishable proofs to combine existing primitives to build efficient new
protocols while in the second we built implicit proofs of knowledge.

In the first part, we followed the Groth-Sahai methodology for non-interactive proofs of knowledge
which led us to two constructions, one allowing to build the first list signature in the standard model,
and one to present a new primitive we called Signatures on Randomizable Ciphertexts.

We first began by enhancing group signatures, and produced new efficient schemes for Traceable
Signatures, and List Signatures.

We then provided a new primitive allowing some commutative properties between signature and
encryption where one can ”decrypt” a signature on a ciphertext to obtain a signature on the associated
plaintext. We called this primitive Signature on Randomizable Ciphertexts. We then instantiated our
primitive under the standard DLin assumption and showed how to use it to propose the first efficient
instantiation of Fischlin’s round-optimal blind signatures which results in a standard signature. We also
gave several other examples on how to use this primitive in other cases, like how to obtain perfectly blind
signatures, or how to allow a part of the message to be public. Thanks to a side result on Waters Hash
Function programmability, we even show how to use some malleability on the ciphertexts to blindly sign
at once multiple messages coming from different sources.

Then we considered interactive protocols and tried to see if there was a way to exploit the interaction
to produce better proofs. We used the Smooth Projective Hash Functions as a way to provide Implicit
Proofs of Knowledge. We developed a complete methodology for these proofs to allow our protocols to
handle many different new languages. We then followed it in various primitives, first Oblivious Signature-
Based Envelope which allows a sender to send a message which can be read only if the recipient has the
appropriate credentials, and then further developed the construction into Language Authenticated Key
Exchange. This new primitive can supersede most of the existing AKE protocols by allowing two users to
establish a shared key, only if both possessed the credentials (viewed as a word in a language) expected
by the other, otherwise they learn nothing on the other credential. The two languages involved do not
necessarily need to be the same as long as the other expects it.

We proved the security of this protocol in the UC framework with joint state and static corrup-
tions. Once again we instantiated those primitives under classical assumption, DLin, and shows various
applications that lead to a very-efficient Password Authenticated Key Exchange protocol, an efficient
verifier-based PAKE so that a server corruption does not compromise the user’s password directly. We
also presented a protocol for Secret Handshakes, with different variations, the authority who signed may
or may not be the same, the user identity may or may not be secret, . . . . We also compared our con-
struction to existing CAKE, and showed that we can handle more general kinds of languages, and that
our instantiations were way more efficient when compared to the cases they can handle.

This new methodology of implicit proofs based on languages have opened new directions of study,
and may prove quite useful in several cases to supplant existing methodology in interactive protocol. We
believe this can lead to better constructions, and may avoid pairing requirements in existing ones when
they rely too deeply on Groth-Sahai. The servers may now require more granular authentication policies
while simultaneously preserving even more the user privacy.
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[ACGP11] Michel Abdalla, Céline Chevalier, Louis Granboulan, and David Pointcheval. Contributory
password-authenticated group key exchange with join capability. In Aggelos Kiayias, editor,
Topics in Cryptology – CT-RSA 2011, volume 6558 of Lecture Notes in Computer Science,
pages 142–160. Springer, February 2011. 113, 117

[ACHdM05] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros. Practical
group signatures without random oracles. Cryptology ePrint Archive, Report 2005/385,
2005. 17
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Résumé

Dans cette thèse, nous proposons et utilisons de nouvelles briques conduisant à des protocoles
efficaces dans le cadre d’une approche modulaire de la cryptographie. Tout d’abord dans un
contexte non-interactif en s’appuyant sur les preuves Groth-Sahai, puis avec des interactions
en permettant aux Smooth Projective Hash Functions de gérer de nouveaux langages.
Dans un premier temps cette thèse s’appuie sur la méthodologie introduite par Groth et
Sahai pour des preuves de connaissance non-interactives pour développer divers protocoles de
signatures de groupe dans le modèle standard, puis de signatures en blanc. Pour cela, nous
proposons un système permettant de signer un chiffré de manière telle que, sous réserve de
connaissance d’un secret indépendant du protocole de signature, il soit possible de retrouver
une signature sur un clair. Cette approche nous permet entre autre de proposer un protocole
de signatures en blanc avec un nombre optimal d’interactions à la fin duquel le demandeur peut
utiliser une signature usuelle et ce sous des hypothèses classiques dans le modèle standard.
Ensuite nous proposons une nouvelle méthodologie pour faire des preuves implicites de con-
naissance dans un contexte interactif sans oracle aléatoire. Pour cela nous utilisons les smooth
projective hash functions, dans un premier temps pour faire des Oblivious Signature-Based
Envelopes, puis dans des protocoles d’authentification et de mise en accord de clés. Ce faisant
nous précisons la notion de langage, et élargissons grandement le spectre des langages pouvant
être traités à l’aide de ces SPHF. Grâce à ce résultat nous introduisons le concept de LAKE
(Language Authenticated Key Exchange) ou encore Échange de clés authentifié par un langage :
un moyen pour deux utilisateurs de se mettre d’accord sur une clé si chacun possède un secret
vérifiant une contrainte espérée par l’autre. Nous montrons alors comment instancier plusieurs
protocoles d’échange de clé sous ce regard plus efficacement qu’avec les techniques actuelles,
et nous prouvons la sécurité de nos instanciations dans le modèle UC sous des hypothèses
usuelles.

Abstract

In this thesis, we create new building blocks and use them to present new efficient protocols via
a modular design. We first begin by using the Groth-Sahai methodology for non-interactive
proofs to design various group signature protocols in the standard model. We also present a
new approach allowing to sign ciphertext and then under the knowledge of a secret independent
from the signature protocol we show how a user can recover the signature on the plaintext,
creating this way some sort of commutative property between signature and encryption where
a decryption of a signature on a ciphertext provides a signature on the associated plaintext.
This approach allows us to build a Round-Optimal Blind Signature scheme where the user
can ultimately exploit a regular signature. We prove the security of this construction under
classical hypotheses in the standard model.
We then present a new methodology for implicit proofs of knowledge in an interactive en-
vironment without random oracle. For that we use Smooth Projective Hash Functions, first
to instantiate Oblivious Signature-Based Envelope schemes, and then to create Authenticated
Key Exchange scheme. Throughout this process we further refine the notion of language,
and greatly widen the set of languages manageable via SPHF. This last result allows us to
introduce the concept of LAKE (Language Authenticated Key Exchange), a new AKE design
where two users will be able to share a common key if they both possess a secret word in
a language expected by the other. We then show how to build standard AKE schemes (like
Password Authenticated Key Exchange) using our framework, and show that our design leads
to an increment in efficiency from pre existing solutions. We prove the security of our design
in the UC framework under regular hypotheses.
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