
Generic Construction of UC-Secure Oblivious Transfer

O. Blazy, C.Chevalier

O. Blazy (Xlim) Generic OT 1 / 20

1 Global Framework

2 Cryptographic Tools

3 1-out-of-t Oblivious Transfer

4 Instantiation

5 Conclusion

O. Blazy (Xlim) Generic OT 2 / 20

1 Global Framework

2 Cryptographic Tools

3 1-out-of-t Oblivious Transfer

4 Instantiation

5 Conclusion

O. Blazy (Xlim) Generic OT 2 / 20

1 Global Framework

2 Cryptographic Tools

3 1-out-of-t Oblivious Transfer

4 Instantiation

5 Conclusion

O. Blazy (Xlim) Generic OT 2 / 20

1 Global Framework

2 Cryptographic Tools

3 1-out-of-t Oblivious Transfer

4 Instantiation

5 Conclusion

O. Blazy (Xlim) Generic OT 2 / 20

1 Global Framework

2 Cryptographic Tools

3 1-out-of-t Oblivious Transfer

4 Instantiation

5 Conclusion

O. Blazy (Xlim) Generic OT 2 / 20

1 Global Framework
Motivation

2 Cryptographic Tools

3 1-out-of-t Oblivious Transfer

4 Instantiation

5 Conclusion

O. Blazy (Xlim) Generic OT 3 / 20

Conditional Actions

Oblivious Transfer
Database User

C(line)
←−−−−−−−−−−−−−−−

DB[line]
−−−−−−−−−−−−−−−→

 The User learns the value of line but nothing else.
 The Database learns nothing.

O. Blazy (Xlim) Generic OT 4 / 20

Semantic security
Only the requested line should be learned by the User

O. Blazy (Xlim) Generic OT 5 / 20

Semantic security
Only the requested line should be learned by the User

Oblivious
The authority should not learn which line was requested

O. Blazy (Xlim) Generic OT 5 / 20

1 Global Framework

2 Cryptographic Tools
Encryption Scheme
Chameleon Hash Scheme
Smooth Projective Hash Function

3 1-out-of-t Oblivious Transfer

4 Instantiation

5 Conclusion

O. Blazy (Xlim) Generic OT 6 / 20

Definition (Encryption Scheme)
E = (Setup,KeyGen,Encrypt,Decrypt):

Setup(K): param;
KeyGen(param): public encryption key pk, private decryption key dk;
Encrypt(pk,m; r): ciphertext c on m ∈M and pk;
Decrypt(dk, c): decrypts c under dk.

Indistinguishability under Chosen Ciphertext Attack

O. Blazy (Xlim) Generic OT 7 / 20

Definition (Chameleon Hash Scheme)
CH = (Setup,KeyGen,CH,Coll):

Setup(K): param;
KeyGen(param): outputs the chameleon hash key ck and the trapdoor tk;
CH(ck,m; r): Picks r , and outputs the hash a;
Coll(ck,m, r ,m′, tk): Takes tk, (m, r) and m′, and outputs r ′ such that
CH(ck,m; r) = CH(ck,m′; r ′).

Extra Procedures (Verification)
VKeyGen(ck): Outputs vk and vtk. ⊥ or public if publicly verifiable.
Valid(ck, vk,m, a, d , vtk): Allows to check that d opens a to m.

Collision Resistance ∗

O. Blazy (Xlim) Generic OT 8 / 20

Definition (Chameleon Hash Scheme)
CH = (Setup,KeyGen,CH,Coll):

Setup(K): param;
KeyGen(param): outputs the chameleon hash key ck and the trapdoor tk;
CH(ck,m; r): Picks r , and outputs the hash a and verification value d ;
Coll(ck,m, r ,m′, tk): Takes tk, (m, r) and m′, and outputs r ′ such that
CH(ck,m; r) = CH(ck,m′; r ′).

Extra Procedures (Verification)
VKeyGen(ck): Outputs vk and vtk. ⊥ or public if publicly verifiable.
Valid(ck, vk,m, a, d , vtk): Allows to check that d opens a to m.

Collision Resistance ∗

O. Blazy (Xlim) Generic OT 8 / 20

Definition (Smooth Projective Hash Functions) [CS02]
Let {H} be a family of functions:

X , domain of these functions
L, subset (a language) of this domain

such that, for any point x in L, H(x) can be computed by using
either a secret hashing key hk: H(x) = HashL(hk; x);
or a public projected key hp: H ′(x) = ProjHashL(hp; x ,w)

Public mapping hk 7→ hp = ProjKGL(hk, x)

O. Blazy (Xlim) Generic OT 9 / 20

Properties

For any x ∈ X , H(x) = HashL(hk; x)
For any x ∈ L, H(x) = ProjHashL(hp; x ,w) w witness that x ∈ L

Smoothness
For any x 6∈ L, H(x) and hp are independent

Pseudo-Randomness
For any x ∈ L, H(x) is pseudo-random, without a witness w

O. Blazy (Xlim) Generic OT 10 / 20

Properties

For any x ∈ X , H(x) = HashL(hk; x)
For any x ∈ L, H(x) = ProjHashL(hp; x ,w) w witness that x ∈ L

Smoothness
For any x 6∈ L, H(x) and hp are independent

Pseudo-Randomness
For any x ∈ L, H(x) is pseudo-random, without a witness w

O. Blazy (Xlim) Generic OT 10 / 20

Properties

For any x ∈ X , H(x) = HashL(hk; x)
For any x ∈ L, H(x) = ProjHashL(hp; x ,w) w witness that x ∈ L

Smoothness
For any x 6∈ L, H(x) and hp are independent

Pseudo-Randomness
For any x ∈ L, H(x) is pseudo-random, without a witness w

O. Blazy (Xlim) Generic OT 10 / 20

1 Global Framework

2 Cryptographic Tools

3 1-out-of-t Oblivious Transfer
Definition
Our Generic Construction
Security

4 Instantiation

5 Conclusion

O. Blazy (Xlim) Generic OT 11 / 20

Oblivious Transfer [Rab81]

A user U wants to access a line ` in a database D composed of t of them:
U learns nothing more than the value of the line `
D does not learn which line was accessed by U

Correctness: if U request a single line, he learns it

Security Notions
Oblivious: D does not know learn which line was accessed ;
Semantic Security: U does not learn any information about the other lines.

O. Blazy (Xlim) Generic OT 12 / 20

Oblivious Transfer [Rab81]

A user U wants to access a line ` in a database D composed of t of them:
U learns nothing more than the value of the line `
D does not learn which line was accessed by U

Correctness: if U request a single line, he learns it

Security Notions
Oblivious: D does not know learn which line was accessed ;
Semantic Security: U does not learn any information about the other lines.

O. Blazy (Xlim) Generic OT 12 / 20

Oblivious Transfer [Rab81]

A user U wants to access a line ` in a database D composed of t of them:
U learns nothing more than the value of the line `
D does not learn which line was accessed by U

Correctness: if U request a single line, he learns it

Security Notions
Oblivious: D does not know learn which line was accessed ;
Semantic Security: U does not learn any information about the other lines.

O. Blazy (Xlim) Generic OT 12 / 20

Generic bit UC Commitment
User picks a bit b, random r , d1−b, ~s, and computes (a, db) = CH(ck, b; r)
He then computes C = Encrypt(d0, d1;~s).

SPHF Compatibility
If the encryption is SPHF friendly, then one can build an SPHF on the language of
valid encryption of a chameleon information.
Lb = {c |∃d1−b, s,Valid(ck, vk, b, a, db, vtk) ∧ c = Encrypt(d0, d1; s)}

O. Blazy (Xlim) Generic OT 13 / 20

Generic bit UC Commitment
User picks a bit b, random r , d1−b, ~s, and computes (a, db) = CH(ck, b; r)
He then computes C = Encrypt(d0, d1;~s).

SPHF Compatibility
If the encryption is SPHF friendly, then one can build an SPHF on the language of
valid encryption of a chameleon information.
Lb = {c |∃d1−b, s,Valid(ck, vk, b, a, db, vtk) ∧ c = Encrypt(d0, d1; s)}

O. Blazy (Xlim) Generic OT 13 / 20

Generic bit UC Commitment
User picks a bit b, random r , d1−b, ~s, and computes (a, db) = CH(ck, b; r)
He then computes C = Encrypt(d0, d1;~s).

SPHF Compatibility
If the encryption is SPHF friendly, then one can build an SPHF on the language of
valid encryption of a chameleon information.
Lb = {c |∃d1−b, s,Valid(ck, vk, b, a, db, vtk) ∧ c = Encrypt(d0, d1; s)}

O. Blazy (Xlim) Generic OT 13 / 20

Generic bit UC Commitment
User picks a bit b, random r , d1−b, ~s, and computes (a, db) = CH(ck, b; r)
He then computes C = Encrypt(d0, d1;~s).

SPHF Compatibility
If the encryption is SPHF friendly, then one can build an SPHF on the language of
valid encryption of a chameleon information.
Lb = {c |∃d1−b, s,Valid(ck, vk, b, a, db, vtk) ∧ c = Encrypt(d0, d1; s)}

O. Blazy (Xlim) Generic OT 13 / 20

Generic 1-out-of-t Oblivious Transfer
User U picks `:
For each bit, picks random ri , d1−`i ,i , and computes (ai , d`i ,i) = CH(ck, `i ; ri)
He then computes C = Encrypt(~d ;~s) and sends C, ~a.
For each line Lj , server S computes hkj , hpj , and Hj = HashLj (hkj , C),
Mj = Hj ⊕ Lj and sends Mj , hpj .
For the line `, user computes H ′` = ProjHashL`

(hp`, C, ~s`), and then
L` = M` ⊕ H ′`

O. Blazy (Xlim) Generic OT 14 / 20

Generic 1-out-of-t Oblivious Transfer
User U picks `:
For each bit, picks random ri , d1−`i ,i , and computes (ai , d`i ,i) = CH(ck, `i ; ri)
He then computes C = Encrypt(~d ;~s) and sends C, ~a.
For each line Lj , server S computes hkj , hpj , and Hj = HashLj (hkj , C),
Mj = Hj ⊕ Lj and sends Mj , hpj .
For the line `, user computes H ′` = ProjHashL`

(hp`, C, ~s`), and then
L` = M` ⊕ H ′`

O. Blazy (Xlim) Generic OT 14 / 20

Generic 1-out-of-t Oblivious Transfer
User U picks `:
For each bit, picks random ri , d1−`i ,i , and computes (ai , d`i ,i) = CH(ck, `i ; ri)
He then computes C = Encrypt(~d ;~s) and sends C, ~a.
For each line Lj , server S computes hkj , hpj , and Hj = HashLj (hkj , C),
Mj = Hj ⊕ Lj and sends Mj , hpj .
For the line `, user computes H ′` = ProjHashL`

(hp`, C, ~s`), and then
L` = M` ⊕ H ′`

O. Blazy (Xlim) Generic OT 14 / 20

Security Properties

X Oblivious: IND-CCA security of the encryption scheme;
X Semantic Security: Smoothness of the SPHF / Collision Resistance of the

Chameleon Hash
X UC simulation: Collision algorithm (Equivocation) of the Chameleon hash

Need an artificial extra-round to handle adaptive corruption
Adds an extra encryption key for a CPA encryption scheme

O. Blazy (Xlim) Generic OT 15 / 20

Security Properties

X Oblivious: IND-CCA security of the encryption scheme;
X Semantic Security: Smoothness of the SPHF / Collision Resistance of the

Chameleon Hash
X UC simulation: Collision algorithm (Equivocation) of the Chameleon hash

Need an artificial extra-round to handle adaptive corruption
Adds an extra encryption key for a CPA encryption scheme

O. Blazy (Xlim) Generic OT 15 / 20

1 Global Framework

2 Cryptographic Tools

3 1-out-of-t Oblivious Transfer

4 Instantiation

5 Conclusion

O. Blazy (Xlim) Generic OT 16 / 20

Chameleon Hash: Discrete Logarithm [Ped91]
KeyGen(K): Outputs ck = (g , h) tk = α = logg (h);
VKeyGen(ck): Generates vk = f and vtk = logg (f)

CH(ck, vk,m; r): s $← Zp, and outputs a = hsgm, d = f s .
Coll(m, s,m′, tk): Outputs s ′ = s + (m −m′)/α.
Valid(ck, vk,m, a, d , vtk): Checks a ?= hm · d1/vtk.

Chameleon Hash: SIS [CHKP10,MP12]

KeyGen(K): ~A0
$← ZK×`

q , (~A1, ~R1)← GenTrapD(1K, 1m, q).
Defines ck = (~A0, ~A1) and tk = ~R1.
VKeyGen(ck): Outputs vk = ⊥, vtk = ⊥
CH(ck, vk, ~M;~r): ~r ← DZm,s·ω(

√
logK)

, ~C = ~A0 ~M + ~A1~r . Returns ~C , ~r .

Coll(tk, (~M0, ~r0), ~M1): Outputs
~r1 ← SampleD(~R1, ~A1, (~A0 ~M0 + ~A1~r0)− ~A0 ~M1), s).

Verif(ck, vtk, ~M, ~C , ~r): ‖~r‖ small, and ~C ?= ~A0 ~M + ~A1~r .

O. Blazy (Xlim) Generic OT 17 / 20

Chameleon Hash: Discrete Logarithm [Ped91]
KeyGen(K): Outputs ck = (g , h) tk = α = logg (h);
VKeyGen(ck): Generates vk = f and vtk = logg (f)

CH(ck, vk,m; r): s $← Zp, and outputs a = hsgm, d = f s .
Coll(m, s,m′, tk): Outputs s ′ = s + (m −m′)/α.
Valid(ck, vk,m, a, d , vtk): Checks a ?= hm · d1/vtk.

Chameleon Hash: SIS [CHKP10,MP12]

KeyGen(K): ~A0
$← ZK×`

q , (~A1, ~R1)← GenTrapD(1K, 1m, q).
Defines ck = (~A0, ~A1) and tk = ~R1.
VKeyGen(ck): Outputs vk = ⊥, vtk = ⊥
CH(ck, vk, ~M;~r): ~r ← DZm,s·ω(

√
logK)

, ~C = ~A0 ~M + ~A1~r . Returns ~C , ~r .

Coll(tk, (~M0, ~r0), ~M1): Outputs
~r1 ← SampleD(~R1, ~A1, (~A0 ~M0 + ~A1~r0)− ~A0 ~M1), s).

Verif(ck, vtk, ~M, ~C , ~r): ‖~r‖ small, and ~C ?= ~A0 ~M + ~A1~r .

O. Blazy (Xlim) Generic OT 17 / 20

CCA-2: Cramer Shoup [CS02]

KeyGen(K): Given g , x1, x2, y1, y2, z
$← Zp, set sk = (x1, x2, y1, y2, z) and

pk = (g1, g2, c1 = g x1
1 g x2

2 , c2 = g y1
1 g y2

2 , h1 = g z
1 ,H).

Encrypt(pk, d ; r): C = (u = g r
1 , v = g r

2 , e = hr1 · d ,w = (c1c
θ
2)

r), where
θ = H(`, u, v , e).
Decrypt(dk, C): If w ?= ux1+θy1v x2+θy2 , then compute M = e/uz .

SPHF on valid encryption of valid chameleon witness

ProjKG(C, b): Computes the projection keys hp = hλf κ, hκ1g
µ
1 g

ν
2 (c1c

β
2)
θ.

Hash(C, hk) H = (C/gmi)λ · ~bhk.
ProjHash(C , b, hp): The prover will compute H ′ = hpshpr .

O. Blazy (Xlim) Generic OT 18 / 20

CCA-2: Cramer Shoup [CS02]

KeyGen(K): Given g , x1, x2, y1, y2, z
$← Zp, set sk = (x1, x2, y1, y2, z) and

pk = (g1, g2, c1 = g x1
1 g x2

2 , c2 = g y1
1 g y2

2 , h1 = g z
1 ,H).

Encrypt(pk, d ; r): C = (u = g r
1 , v = g r

2 , e = hr1 · d ,w = (c1c
θ
2)

r), where
θ = H(`, u, v , e).
Decrypt(dk, C): If w ?= ux1+θy1v x2+θy2 , then compute M = e/uz .

SPHF on valid encryption of valid chameleon witness

ProjKG(C, b): Computes the projection keys hp = hλf κ, hκ1g
µ
1 g

ν
2 (c1c

β
2)
θ.

Hash(C, hk) H = (C/gmi)λ · ~bhk.
ProjHash(C , b, hp): The prover will compute H ′ = hpshpr .

O. Blazy (Xlim) Generic OT 18 / 20

CCA-2 ?
We need an SPHF compatible encryption.
Only [KV09] is known, and only for approximate SPHF, and is only CCA-1
However CCA-1 + S-OTS ⇒ CCA-2, and Chameleon Hashes gives S-OTS
Approximate SPHF, requires repetition for perfect line recovery.

O. Blazy (Xlim) Generic OT 19 / 20

CCA-2 ?
We need an SPHF compatible encryption.
Only [KV09] is known, and only for approximate SPHF, and is only CCA-1
However CCA-1 + S-OTS ⇒ CCA-2, and Chameleon Hashes gives S-OTS
Approximate SPHF, requires repetition for perfect line recovery.

O. Blazy (Xlim) Generic OT 19 / 20

CCA-2 ?
We need an SPHF compatible encryption.
Only [KV09] is known, and only for approximate SPHF, and is only CCA-1
However CCA-1 + S-OTS ⇒ CCA-2, and Chameleon Hashes gives S-OTS
Approximate SPHF, requires repetition for perfect line recovery.

O. Blazy (Xlim) Generic OT 19 / 20

CCA-2 ?
We need an SPHF compatible encryption.
Only [KV09] is known, and only for approximate SPHF, and is only CCA-1
However CCA-1 + S-OTS ⇒ CCA-2, and Chameleon Hashes gives S-OTS
Approximate SPHF, requires repetition for perfect line recovery.

O. Blazy (Xlim) Generic OT 19 / 20

X Generic Framework for 1-out-k Oblivious Transfer
X Constructions under classical assumptions (DCR,DDH, LWE) in the standard

model
X Proven in the UC framework with adaptive corruptions
X As efficient as [ABB+13] but without pairings
X Constant size CRS (contrarily to [PVW08])

O. Blazy (Xlim) Generic OT 20 / 20

X Generic Framework for 1-out-k Oblivious Transfer
X Constructions under classical assumptions (DCR,DDH, LWE) in the standard

model
X Proven in the UC framework with adaptive corruptions
X As efficient as [ABB+13] but without pairings
X Constant size CRS (contrarily to [PVW08])

O. Blazy (Xlim) Generic OT 20 / 20

X Generic Framework for 1-out-k Oblivious Transfer
X Constructions under classical assumptions (DCR,DDH, LWE) in the standard

model
X Proven in the UC framework with adaptive corruptions
X As efficient as [ABB+13] but without pairings
X Constant size CRS (contrarily to [PVW08])

O. Blazy (Xlim) Generic OT 20 / 20

X Generic Framework for 1-out-k Oblivious Transfer
X Constructions under classical assumptions (DCR,DDH, LWE) in the standard

model
X Proven in the UC framework with adaptive corruptions
X As efficient as [ABB+13] but without pairings
X Constant size CRS (contrarily to [PVW08])

O. Blazy (Xlim) Generic OT 20 / 20

X Generic Framework for 1-out-k Oblivious Transfer
X Constructions under classical assumptions (DCR,DDH, LWE) in the standard

model
X Proven in the UC framework with adaptive corruptions
X As efficient as [ABB+13] but without pairings
X Constant size CRS (contrarily to [PVW08])

O. Blazy (Xlim) Generic OT 20 / 20

	Global Framework
	Motivation

	Cryptographic Tools
	Encryption Scheme
	Chameleon Hash Scheme
	Smooth Projective Hash Function

	1-out-of-t Oblivious Transfer
	Definition
	Our Generic Construction
	Security

	Instantiation
	Conclusion

