

RUHR-UNIVERSITÄT BOCHUM Efficient UC-Secure Authenticated Key-Exchange for Algebraic Languages PKC 2013,

Fabrice Ben Hamouda Olivier Blazy Céline Chevalier David Pointcheval Damien Vergnaud Horst Görtz Institute for IT Security / Ruhr-University Bochum ENS / CNRS / INRIA / Université Panthéon-Assas

1 Introduction

2 Building Blocks

1 Introduction

- 2 Building Blocks
- 3 Language Authenticated Key Exchange

1 Introduction

- 2 Building Blocks
- 3 Language Authenticated Key Exchange
- 4 Conclusion

RUB

Outline

- 2 Building Blocks
- 3 Language Authenticated Key Exchange

4 Conclusion

Authenticated Key Exchange

 K_{AB}

Share a common session key iff everything goes well.

Share a common session key iff they possess the same password.

RUB

Share a common session key iff their signatures fit.

Share a common session key iff they possess the required credentials.

Language Authenticated Key Exchange

Share a common session key iff their (words/languages) fit.

RUB

Outline

2 Building Blocks

- Cramer Shoup Encryption Revisited
- Smooth Projective Hash Functions and their language
- Manageable Languages

3 Language Authenticated Key Exchange

4 Conclusion

Cramer Shoup Encryption

Definition

- § Setup (1^{λ}) : Generates a multiplicative group $(p, \mathbb{G}, g_1, g_2)$.
- § Encrypt(pk, M; α): For M, and $\alpha \stackrel{\$}{\leftarrow} \mathbb{Z}_p$, defines $\mathcal{C} = CS(M; \alpha)$ as $(u = (g_1^{\alpha}, g_2^{\alpha}), e = Mh^{\alpha}, v = (cd^{\xi})^{\alpha}).$ $\xi = \text{Hash}(u, e)$
- § Decrypt(dk = $(\mu, \nu, \eta), C = (u, e, v)$): If $v = \prod u_i^{\mu_i + \xi \nu_i}$, then $M = e \cdot \prod u_i^{-\eta_i}$.

IND-CCA under DDH

[CS02]

Double Cramer Shoup Encryption

RUB

Definition

- § Setup (1^{λ}) : Generates a multiplicative group $(p, \mathbb{G}, g_1, g_2)$.
- § EKeyGen_{\mathcal{E}}(param): dk $\stackrel{\$}{\leftarrow} \mathbb{Z}_p^6$, pk.
- § Encrypt₁($\mathsf{pk}, M; \alpha$): $\mathcal{C} = CS(M; \alpha)$.
- § Encrypt₂(pk, N, $\xi; \alpha'$): For N, and $\alpha \stackrel{\$}{\leftarrow} \mathbb{Z}_p$, defines $\mathcal{C}' = CS'(N, \xi; \alpha)$ as $(u' = (g_1^{\alpha'}, g_2^{\alpha'}), e' = Mh^{\alpha'}, v' = (cd^{\xi})^{\alpha'}).$
- § Decrypt(dk = (μ, ν, η), C = (u, e, v), C'): If $v = \prod u_i^{\mu_i + \xi \nu_i}$, then $M = e \cdot \prod u_i^{-\eta_i}$. If $v' = \prod u_i'^{\mu_i + \xi \nu_i}$, then $N = e' \cdot \prod u_i'^{-\eta_i}$.

IND-PD-CCA under DDH (IND-CCA on CS, IND-CPA on CS')

Multi Double Cramer Shoup Encryption

Definition

- § Setup (1^{λ}) : Generates a multiplicative group $(p, \mathbb{G}, g_1, g_2)$.
- § EKeyGen_{\mathcal{E}}(param): dk $\stackrel{\$}{\leftarrow} \mathbb{Z}_p^6$, pk.
- § Encrypt₁(pk, M; α): $C = CS(M; \alpha)$, where $\xi = Hash(u, e)$.
- § Encrypt₂($\mathsf{pk}, \mathsf{N}, \xi; \alpha'$): $\mathcal{C}' = CS'(\mathsf{N}, \xi; \alpha')$.

§ Decrypt(dk = (
$$\mu, \nu, \eta$$
), C, C'):
If $\mathbf{v} = \prod \mathbf{u}_i^{\mu_i + \xi \nu_i}$, then $\mathbf{M} = \mathbf{e} \cdot \prod \mathbf{u}_i^{-\eta_i}$.
If $\mathbf{v}' = \prod \mathbf{u}'^{\mu_i + \xi \nu_i}$, then $\mathbf{N} = \mathbf{e}' \cdot \prod \mathbf{u}'^{-\eta_i}_i$

IND-PD-CCA under DDH.

Smooth Projective Hash Functions

[CS02,GL03]

Let $\{H\}$ be a family of functions:

- \S X, domain of these functions
- § L, subset (a language) of this domain

such that, for any point x in L, H(x) can be computed by using

- § either a secret hashing key hk: $H(x) = \text{Hash}_L(\text{hk}; x);$
- § or a *public* projected key hp: $H'(x) = \text{ProjHash}_L(\text{hp}; x, w)$

Public mapping $hk \mapsto hp = ProjKG_L(hk, x)$

For any
$$x \in X$$
, $H(x) = \text{Hash}_L(\text{hk}; x)$
For any $x \in L$, $H(x) = \text{ProjHash}_L(\text{hp}; x, w)$ w witness that $x \in L$

For any $x \in X$, $H(x) = \text{Hash}_L(\text{hk}; x)$ For any $x \in L$, $H(x) = \text{ProjHash}_L(\text{hp}; x, w)$ w witness that $x \in L$

Smoothness

For any $x \notin L$, H(x) and hp are independent

For any $x \in X$, $H(x) = \text{Hash}_L(\text{hk}; x)$ For any $x \in L$, $H(x) = \text{ProjHash}_L(\text{hp}; x, w)$ w witness that $x \in L$

Smoothness

For any $x \notin L$, H(x) and hp are independent

Pseudo-Randomness

For any $x \in L$, H(x) is pseudo-random, without a witness w

For any $x \in X$, $H(x) = \text{Hash}_L(\text{hk}; x)$ For any $x \in L$, $H(x) = \text{ProjHash}_L(\text{hp}; x, w)$ w witness that $x \in L$

Smoothness

For any $x \notin L$, H(x) and hp are independent

Pseudo-Randomness

For any $x \in L$, H(x) is pseudo-random, without a witness w

The latter property requires *L* to be a hard-partitioned subset of *X*:

Hard-Partitioned Subset

L is a hard-partitioned subset of *X* if it is computationally hard to distinguish a random element in *L* from a random element in $X \setminus L$

§ Diffie Hellman / Linear Tuple

 $\begin{array}{ll} (g,h,G=g^a,H=h^a) & \mbox{Valid Diffie Hellman tuple?} \\ hp:g^\kappa h^\lambda & \mbox{hp}^a=G^\kappa H^\lambda \\ \mbox{Oblivious Transfer, Implicit Opening of a ciphertext} \end{array}$

§ Diffie Hellman / Linear Tuple

 $\begin{array}{ll} (g,h,G=g^a,H=h^a) & \mbox{Valid Diffie Hellman tuple?} \\ hp:g^\kappa h^\lambda & \mbox{hp}^a=G^\kappa H^\lambda \\ \mbox{Oblivious Transfer, Implicit Opening of a ciphertext} \end{array}$

$$\begin{array}{ll} (U=u^a,V=v^b,W=g^{a+b}) & \mbox{Valid Linear tuple?} \\ hp:u^\kappa g^\lambda,v^\mu g^\lambda & \mbox{hp}_1^a hp_2^b = U^\kappa V^\mu W^\lambda \end{array}$$

- § Diffie Hellman / Linear Tuple
- $_{\S}$ Conjunction / Disjunction

 $\begin{array}{l} \mathcal{L}_1 \cap \mathcal{L}_2 \\ \mathsf{hp}: \mathsf{hp}_1, \mathsf{hp}_2 \\ \wedge \mathcal{A}_i \end{array}$

Simultaneous verification $H_1' \cdot H_2' = H_1 \cdot H_2$

- § Diffie Hellman / Linear Tuple
- § Conjunction / Disjunction

One out of 2 conditions
$$H' = \mathcal{L}_1 ?hp_1^{w_1} : hp_2^{w_2} \cdot hp_{\Delta} = X_1^{hk_1}$$

Advanced Languages

$$\begin{array}{ll} (u_1 = g_1^r, u_2 = g_2^r, e = h^r M, v = (cd^{\xi})^r) & \quad \text{Verifiability of the CS} \\ \text{hp} : g_1^{\kappa} g_2^{\mu} (cd^{\xi})^{\eta} h^{\lambda} & \quad \text{hp}^r = u_1^{\kappa} u_2^{\mu} v^{\eta} (e/M)^{\lambda} \end{array}$$

Implicit Opening of a ciphertext, verifiability of a ciphertext, PAKE

Advanced Languages

§ (Linear) Cramer-Shoup Encryption

$$\begin{array}{ll} (u_1 = g_1^r, u_2 = g_2^r, e = h^r M, v = (cd^{\xi})^r) & \quad \text{Verifiability of the CS} \\ \text{hp} : g_1^{\kappa} g_2^{\mu} (cd^{\xi})^{\eta} h^{\lambda} & \quad \text{hp}^r = u_1^{\kappa} u_2^{\mu} v^{\eta} (e/M)^{\lambda} \end{array}$$

Implicit Opening of a ciphertext, verifiability of a ciphertext, PAKE

 $\begin{array}{ll} (g_1^r, g_2^s, g_3^{r+s}, h_1^r h_2^s M, (c_1 d_1^{\xi})^r (c_2 d_2^{\xi})^s) & \text{Verifiability of the LCS} \\ \text{hp} : g_1^\kappa g_3^\theta (c_1 d_1^{\xi})^\eta h^\lambda, g_2^\mu g_3^\theta (c_2 d_2^{\xi})^\eta h^\lambda & \text{hp}_1^r \text{hp}_2^s = u_1^\kappa u_2^\mu u_3^\theta v^\eta (e/M)^\lambda \end{array}$

Advanced Languages

- § (Linear) Cramer-Shoup Encryption
- § Commitment of a commitment

 $(U = u^a, V = v^s, G = h^s g^a)$ hp: $u^\eta g^\lambda, v^\theta h^\lambda$

ELin hp₁^ahp₂^s = $U^{\eta}V^{\theta}G^{\lambda}$

Advanced Languages

- § (Linear) Cramer-Shoup Encryption
- § Commitment of a commitment
- § Linear Pairing Equations

$$\left(\prod_{i\in A_k} e(\mathcal{Y}_i, \mathcal{A}_{k,i})\right) \cdot \left(\prod_{i\in B_k} \mathcal{Z}_i^{\mathfrak{Z}_{k,i}}\right) = \mathcal{D}_k$$

For each variables: $hp_i : u^{\kappa_i} g^{\lambda}, v^{\mu_i} g^{\lambda}$ $\left(\prod_{i \in A_k} e(hp_i^{w_i}, A_{k,i})\right) \cdot \left(\prod_{i \in B_k} HP_i^{3_{k,i}w_i}\right) =$ $\left(\prod_{i \in A_k} e(H_i, A_{k,i})\right) \cdot \left(\prod_{i \in B_k} H_i^{3_{k,i}}\right) / \mathcal{D}_k^{\lambda}$

Knowledge of a secret key, Knowledge of a (secret) signature on a (secret) message valid under a (secret) verification key, ...

Commitment à la Lindell

RUB

nai

[Lin11]

Commitment à la Lindell

RUB

hai

[Lin11]

§ Self-Randomizable Language

- § Self-Randomizable Language
- \S Double-Step PD-CCA Commitment

RUB

- § Self-Randomizable Language
- $_{\S}$ Double-Step PD-CCA Commitment
- § Implicit Decommitment

Outline

2 Building Blocks

- 3 Language Authenticated Key Exchange
 - General Instantiation
 - Secret Handshakes
 - Password Authenticated Key Exchange

4 Conclusion

RUB

Language Authenticated Key Exchange

Alice

 $\xrightarrow{\mathcal{C}(\mathcal{L}_B, \mathcal{L}'_A, M_B), \pi(\mathcal{C}')}_{\underbrace{\mathcal{C}(\mathcal{L}'_B, \mathcal{L}_A, M_A), hp_B, \epsilon}}$

 $\mathsf{hp}_{\mathcal{A}}, \mathcal{C}'(1, 1, 1)$

Bob

 $H'_B \cdot H_A$

Same value iff languages are as expected, and users know witnesses.

LAKE | Horst Görtz Institute for IT-Security | PKC 2013

 $H_B \cdot H'_A$

Secret Handshakes for the same secret signing authority

Alice

 $\mathcal{C}(\mathcal{L}(\sigma, \mathsf{vk}_B, id_B), \mathcal{L}(\sigma, \mathsf{vk}_B, id_A), \sigma(B)), \mathsf{hp}_B, \epsilon$

 $\mathsf{hp}_{\mathcal{A}}, \mathcal{C}'(1, 1, 1)$

Bob

RUB

 $H_B \cdot H'_A$

 $H'_B \cdot H_A$

Ciphertext of a Waters Signature valid under the committed vk: $e(\sigma_1, g) = e(h, vk) \cdot e(id_*, \sigma_2)$

Password Authenticated Key Exchange

Share a common session key iff they possess the same password.

Password Authenticated Key Exchange

Bob

Alice

 $\begin{array}{c} \underbrace{u^{r_{A}}, v^{r_{A}}, pw_{B}h^{r_{A}}, (cd^{\xi_{A}})^{r_{A}}}_{g^{t}k^{\operatorname{Hash}(\mathcal{C}'_{A})}} \\ \xrightarrow{pw_{A}h^{r_{B}}, g^{r_{B}}}_{hp_{B}: u^{\lambda_{B}}v^{\mu_{B}}h^{\eta_{B}}(cd^{\xi_{A}})^{\theta_{B}}, \epsilon} \\ \underbrace{\mathcal{C}'_{A} = (u^{s_{A}}, v^{s_{A}}, h^{s_{A}}, (cd^{\xi_{A}})^{s_{A}})}_{t, hp_{A}: g^{\lambda_{A}}h^{\eta_{A}}} \end{array}$

 $\mathsf{hp}_{A}^{r_{B}} \cdot \mathcal{C}_{A,-pw_{B}}^{*} \mathsf{hk}_{B}$

$$\mathcal{C}_{B,-pw_{A}}^{\mathsf{hk}_{A}} \cdot \mathsf{hp}_{B}^{s_{A}+\epsilon r_{A}}$$

LAKE | Horst Görtz Institute for IT-Security | PKC 2013

23/26

RUB

Outline

- 2 Building Blocks
- 3 Language Authenticated Key Exchange

4 Conclusion

 $\checkmark\,$ We presented a general Framework to instantiate several AKE protocols.

- $\checkmark\,$ We presented a general Framework to instantiate several AKE protocols.
- ✓ This allows to produce efficient UC instantiations under classical assumptions (DDH,DLin,...)

- $\checkmark\,$ We presented a general Framework to instantiate several AKE protocols.
- ✓ This allows to produce efficient UC instantiations under classical assumptions (DDH,DLin,...)
- $\checkmark~$ Concrete examples for PAKE, v-PAKE, several Secret Handshakes, CAKE, \ldots

- $\checkmark\,$ We presented a general Framework to instantiate several AKE protocols.
- ✓ This allows to produce efficient UC instantiations under classical assumptions (DDH,DLin,...)
- $\checkmark\,$ Concrete examples for PAKE, v-PAKE, several Secret Handshakes, CAKE, \ldots
- \checkmark New manageable languages with SPHF implicit proofs of knowledge

- $\checkmark\,$ We presented a general Framework to instantiate several AKE protocols.
- ✓ This allows to produce efficient UC instantiations under classical assumptions (DDH,DLin,...)
- $\checkmark\,$ Concrete examples for PAKE, v-PAKE, several Secret Handshakes, CAKE, \ldots
- \checkmark New manageable languages with SPHF implicit proofs of knowledge
- $\checkmark\,$ Several new tools: multi-commitment on CS, revisited commitment à la Lindell, \ldots

RUHR-UNIVERSITÄT BOCHUM Many thanks for your attention!

Any questions?

More details are available in the full version...

